1,700 research outputs found

    Learning Object Categories From Internet Image Searches

    Get PDF
    In this paper, we describe a simple approach to learning models of visual object categories from images gathered from Internet image search engines. The images for a given keyword are typically highly variable, with a large fraction being unrelated to the query term, and thus pose a challenging environment from which to learn. By training our models directly from Internet images, we remove the need to laboriously compile training data sets, required by most other recognition approaches-this opens up the possibility of learning object category models “on-the-fly.” We describe two simple approaches, derived from the probabilistic latent semantic analysis (pLSA) technique for text document analysis, that can be used to automatically learn object models from these data. We show two applications of the learned model: first, to rerank the images returned by the search engine, thus improving the quality of the search engine; and second, to recognize objects in other image data sets

    Weakly-Supervised Neural Text Classification

    Full text link
    Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semi-supervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.Comment: CIKM 2018 Full Pape

    ServeNet: A Deep Neural Network for Web Services Classification

    Full text link
    Automated service classification plays a crucial role in service discovery, selection, and composition. Machine learning has been widely used for service classification in recent years. However, the performance of conventional machine learning methods highly depends on the quality of manual feature engineering. In this paper, we present a novel deep neural network to automatically abstract low-level representation of both service name and service description to high-level merged features without feature engineering and the length limitation, and then predict service classification on 50 service categories. To demonstrate the effectiveness of our approach, we conduct a comprehensive experimental study by comparing 10 machine learning methods on 10,000 real-world web services. The result shows that the proposed deep neural network can achieve higher accuracy in classification and more robust than other machine learning methods.Comment: Accepted by ICWS'2

    What Works Better? A Study of Classifying Requirements

    Full text link
    Classifying requirements into functional requirements (FR) and non-functional ones (NFR) is an important task in requirements engineering. However, automated classification of requirements written in natural language is not straightforward, due to the variability of natural language and the absence of a controlled vocabulary. This paper investigates how automated classification of requirements into FR and NFR can be improved and how well several machine learning approaches work in this context. We contribute an approach for preprocessing requirements that standardizes and normalizes requirements before applying classification algorithms. Further, we report on how well several existing machine learning methods perform for automated classification of NFRs into sub-categories such as usability, availability, or performance. Our study is performed on 625 requirements provided by the OpenScience tera-PROMISE repository. We found that our preprocessing improved the performance of an existing classification method. We further found significant differences in the performance of approaches such as Latent Dirichlet Allocation, Biterm Topic Modeling, or Naive Bayes for the sub-classification of NFRs.Comment: 7 pages, the 25th IEEE International Conference on Requirements Engineering (RE'17

    A Review on Web Page Classification

    Get PDF
    With the increase in digital documents on the world wide web and an increase in the number of webpages and blogs which are common sources for providing users with news about current events, aggregating and categorizing information from these sources seems to be a daunting task as the volume of digital documents available online is growing exponentially. Although several benefits can accrue from the accurate classification of such documents into their respective categories such as providing tools that help people to find, filter and analyze digital information on the web amongst others. Accurate classification of these documents into their respective categories is dependent on the quality of training dataset which is dependent on the preprocessing techniques. Existing literature in this area of web page classification identified that better document representation techniques would reduce the training and testing time, improve the classification accuracy, precision and recall of classifier. In this paper, we give an overview of web page classification with an in-depth study of the web classification process, while at the same time making awareness of the need for an adequate document representation technique as this helps capture the semantics of document and-also contribute to reduce the problem of high dimensionality

    Bibliometric Survey on Incremental Learning in Text Classification Algorithms for False Information Detection

    Get PDF
    The false information or misinformation over the web has severe effects on people, business and society as a whole. Therefore, detection of misinformation has become a topic of research among many researchers. Detecting misinformation of textual articles is directly connected to text classification problem. With the massive and dynamic generation of unstructured textual documents over the web, incremental learning in text classification has gained more popularity. This survey explores recent advancements in incremental learning in text classification and review the research publications of the area from Scopus, Web of Science, Google Scholar, and IEEE databases and perform quantitative analysis by using methods such as publication statistics, collaboration degree, research network analysis, and citation analysis. The contribution of this study in incremental learning in text classification provides researchers insights on the latest status of the research through literature survey, and helps the researchers to know the various applications and the techniques used recently in the field
    corecore