22 research outputs found

    The Most Common Characteristics of Fragile Video Watermarking: A Review

    Get PDF
    The progress of network and multimedia technologies has been phenomenal during the previous two decades. Unauthorized users will be able to copy, retransmit, modify reproduction, and upload the contents more easily as a result of this innovation. Malicious attackers are quite concerned about the development and widespread use of digital video. Digital watermarking technology gives solutions to the aforementioned problems. Watermarking methods can alleviate these issues by embedding a secret watermark in the original host data, allowing the genuine user or file owner to identify any manipulation. In this study, lots of papers have been analyzed and studied carefully, in the period 2011–2022. The historical basis of the subject should not be forgotten so studying old research will give a clear idea of the topic. To aid future researchers in this subject, we give a review of fragile watermarking approaches and some related papers presented in recent years. This paper presents a comparison of many relevant works in this field based on some of the outcomes and improvements gained in these studies, which focuses on the common characteristics that increase the effect of watermarking techniques such as invisibility, tamper detection, recovery, and security &nbsp

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Protection of Records and Data Authentication based on Secret Shares and Watermarking

    Get PDF
    The rapid growth in communication technology facilitates the health industry in many aspects from transmission of sensor’s data to real-time diagnosis using cloud-based frameworks. However, the secure transmission of data and its authenticity become a challenging task, especially, for health-related applications. The medical information must be accessible to only the relevant healthcare staff to avoid any unfortunate circumstances for the patient as well as for the healthcare providers. Therefore, a method to protect the identity of a patient and authentication of transmitted data is proposed in this study. The proposed method provides dual protection. First, it encrypts the identity using Shamir’s secret sharing scheme without the increase in dimension of the original identity. Second, the identity is watermarked using zero-watermarking to avoid any distortion into the host signal. The experimental results show that the proposed method encrypts, embeds and extracts identities reliably. Moreover, in case of malicious attack, the method distorts the embedded identity which provides a clear indication of fabrication. An automatic disorder detection system using Mel-frequency cepstral coefficients and Gaussian mixture model is also implemented which concludes that malicious attacks greatly impact on the accurate diagnosis of disorders

    Image forgery detection using textural features and deep learning

    Full text link
    La croissance exponentielle et les progrès de la technologie ont rendu très pratique le partage de données visuelles, d'images et de données vidéo par le biais d’une vaste prépondérance de platesformes disponibles. Avec le développement rapide des technologies Internet et multimédia, l’efficacité de la gestion et du stockage, la rapidité de transmission et de partage, l'analyse en temps réel et le traitement des ressources multimédias numériques sont progressivement devenus un élément indispensable du travail et de la vie de nombreuses personnes. Sans aucun doute, une telle croissance technologique a rendu le forgeage de données visuelles relativement facile et réaliste sans laisser de traces évidentes. L'abus de ces données falsifiées peut tromper le public et répandre la désinformation parmi les masses. Compte tenu des faits mentionnés ci-dessus, la criminalistique des images doit être utilisée pour authentifier et maintenir l'intégrité des données visuelles. Pour cela, nous proposons une technique de détection passive de falsification d'images basée sur les incohérences de texture et de bruit introduites dans une image du fait de l'opération de falsification. De plus, le réseau de détection de falsification d'images (IFD-Net) proposé utilise une architecture basée sur un réseau de neurones à convolution (CNN) pour classer les images comme falsifiées ou vierges. Les motifs résiduels de texture et de bruit sont extraits des images à l'aide du motif binaire local (LBP) et du modèle Noiseprint. Les images classées comme forgées sont ensuite utilisées pour mener des expériences afin d'analyser les difficultés de localisation des pièces forgées dans ces images à l'aide de différents modèles de segmentation d'apprentissage en profondeur. Les résultats expérimentaux montrent que l'IFD-Net fonctionne comme les autres méthodes de détection de falsification d'images sur l'ensemble de données CASIA v2.0. Les résultats discutent également des raisons des difficultés de segmentation des régions forgées dans les images du jeu de données CASIA v2.0.The exponential growth and advancement of technology have made it quite convenient for people to share visual data, imagery, and video data through a vast preponderance of available platforms. With the rapid development of Internet and multimedia technologies, performing efficient storage and management, fast transmission and sharing, real-time analysis, and processing of digital media resources has gradually become an indispensable part of many people’s work and life. Undoubtedly such technological growth has made forging visual data relatively easy and realistic without leaving any obvious visual clues. Abuse of such tampered data can deceive the public and spread misinformation amongst the masses. Considering the facts mentioned above, image forensics must be used to authenticate and maintain the integrity of visual data. For this purpose, we propose a passive image forgery detection technique based on textural and noise inconsistencies introduced in an image because of the tampering operation. Moreover, the proposed Image Forgery Detection Network (IFD-Net) uses a Convolution Neural Network (CNN) based architecture to classify the images as forged or pristine. The textural and noise residual patterns are extracted from the images using Local Binary Pattern (LBP) and the Noiseprint model. The images classified as forged are then utilized to conduct experiments to analyze the difficulties in localizing the forged parts in these images using different deep learning segmentation models. Experimental results show that both the IFD-Net perform like other image forgery detection methods on the CASIA v2.0 dataset. The results also discuss the reasons behind the difficulties in segmenting the forged regions in the images of the CASIA v2.0 dataset

    A Novel Fragile Zero-Watermarking Algorithm for Digital Medical Images

    Get PDF
    The wireless transmission of patients’ particulars and medical data to a specialised centre after an initial screening at a remote health facility may cause potential threats to patients’ data privacy and integrity. Although watermarking can be used to rectify such risks, it should not degrade the medical data, because any change in the data characteristics may lead to a false diagnosis. Hence, zero watermarking can be helpful in these circumstances. At the same time, the transmitted data must create a warning in case of tampering or a malicious attack. Thus, watermarking should be fragile in nature. Consequently, a novel hybrid approach using fragile zero watermarking is proposed in this study. Visual cryptography and chaotic randomness are major components of the proposed algorithm to avoid any breach of information through an illegitimate attempt. The proposed algorithm is evaluated using two datasets: the Digital Database for Screening Mammography and the Mini Mammographic Image Analysis Society database. In addition, a breast cancer detection system using a convolutional neural network is implemented to analyse the diagnosis in case of a malicious attack and after watermark insertion. The experimental results indicate that the proposed algorithm is reliable for privacy protection and data authentication

    Passive Techniques for Detecting and Locating Manipulations in Digital Images

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, leída el 19-11-2020El numero de camaras digitales integradas en dispositivos moviles as como su uso en la vida cotidiana esta en continuo crecimiento. Diariamente gran cantidad de imagenes digitales, generadas o no por este tipo de dispositivos, circulan en Internet o son utilizadas como evidencias o pruebas en procesos judiciales. Como consecuencia, el analisis forense de imagenes digitales cobra importancia en multitud de situaciones de la vida real. El analisis forense de imagenes digitales se divide en dos grandes ramas: autenticidad de imagenes digitales e identificacion de la fuente de adquisicion de una imagen. La primera trata de discernir si una imagen ha sufrido algun procesamiento posterior al de su creacion, es decir, que no haya sido manipulada. La segunda pretende identificar el dispositivo que genero la imagen digital. La verificacion de la autenticidad de imagenes digitales se puedellevar a cabo mediante tecnicas activas y tecnicas pasivas de analisis forense. Las tecnicas activas se fundamentan en que las imagenes digitales cuentan con \marcas" presentes desde su creacion, de forma que cualquier tipo de alteracion que se realice con posterioridad a su generacion, modificara las mismas, y, por tanto, permitiran detectar si ha existido un posible post-proceso o manipulacion...The number of digital cameras integrated into mobile devices as well as their use in everyday life is continuously growing. Every day a large number of digital images, whether generated by this type of device or not, circulate on the Internet or are used as evidence in legal proceedings. Consequently, the forensic analysis of digital images becomes important in many real-life situations. Forensic analysis of digital images is divided into two main branches: authenticity of digital images and identi cation of the source of acquisition of an image. The first attempts to discern whether an image has undergone any processing subsequent to its creation, i.e. that it has not been manipulated. The second aims to identify the device that generated the digital image. Verification of the authenticity of digital images can be carried out using both active and passive forensic analysis techniques. The active techniques are based on the fact that the digital images have "marks"present since their creation so that any type of alteration made after their generation will modify them, and therefore will allow detection if there has been any possible post-processing or manipulation. On the other hand, passive techniques perform the analysis of authenticity by extracting characteristics from the image...Fac. de InformáticaTRUEunpu
    corecore