3,023 research outputs found

    Information-geometric Markov Chain Monte Carlo methods using Diffusions

    Get PDF
    Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond Statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for Statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. After this geometric concepts in Markov chain Monte Carlo are introduced. A full derivation of the Langevin diffusion on a Riemannian manifold is given, together with a discussion of appropriate Riemannian metric choice for different problems. A survey of applications is provided, and some open questions are discussed.Comment: 22 pages, 2 figure

    Importance Sampling for Multiscale Diffusions

    Full text link
    We construct importance sampling schemes for stochastic differential equations with small noise and fast oscillating coefficients. Standard Monte Carlo methods perform poorly for these problems in the small noise limit. With multiscale processes there are additional complications, and indeed the straightforward adaptation of methods for standard small noise diffusions will not produce efficient schemes. Using the subsolution approach we construct schemes and identify conditions under which the schemes will be asymptotically optimal. Examples and simulation results are provided