20,393 research outputs found

    Analysis of distributed resource management in wireless LANs that support fault tolerance

    Get PDF
    Deploying wireless LANs (WLAN) at large scale is mainly affected by reliability, availability, and performance. These parameters will be a concern for most of managers who wanted to deploy WLANs. In order to address these concerns, new radio resource management techniques with fault tolerance can be used in a new generation of wireless LAN equipment. These techniques would include distributed dynamic channel assignment, sharing load among Access Points (AP), and supporting fault tolerance. Changing from the relatively static radio resource management techniques generally in use today to dynamic methods has been addressed in previous research article using centralized management, but it suffer from network availability problem. In [10] a new distributed management for dynamic channel assignment has been suggested. In this paper the idea has been extended to support fault tolerance, which improves the network availability and reliability compared to centralized management techniques. In addition, it will help in increasing network capacities and improve its performance especially in large-scale WLANs. The new system has been analyzed and according to binomial distribution results showed improvement of network performance compared to static load distribution

    Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)

    Get PDF
    BACKGROUND: BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. RESULTS: W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. CONCLUSION: W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum

    Fault-Tolerant Adaptive Parallel and Distributed Simulation

    Full text link
    Discrete Event Simulation is a widely used technique that is used to model and analyze complex systems in many fields of science and engineering. The increasingly large size of simulation models poses a serious computational challenge, since the time needed to run a simulation can be prohibitively large. For this reason, Parallel and Distributes Simulation techniques have been proposed to take advantage of multiple execution units which are found in multicore processors, cluster of workstations or HPC systems. The current generation of HPC systems includes hundreds of thousands of computing nodes and a vast amount of ancillary components. Despite improvements in manufacturing processes, failures of some components are frequent, and the situation will get worse as larger systems are built. In this paper we describe FT-GAIA, a software-based fault-tolerant extension of the GAIA/ART\`IS parallel simulation middleware. FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes; furthermore, FT-GAIA offers some protection against byzantine failures since synchronization messages are replicated as well, so that the receiving entity can identify and discard corrupted messages. We provide an experimental evaluation of FT-GAIA on a running prototype. Results show that a high degree of fault tolerance can be achieved, at the cost of a moderate increase in the computational load of the execution units.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2016

    Introduction to the special section on dependable network computing

    Get PDF
    Dependable network computing is becoming a key part of our daily economic and social life. Every day, millions of users and businesses are utilizing the Internet infrastructure for real-time electronic commerce transactions, scheduling important events, and building relationships. While network traffic and the number of users are rapidly growing, the mean-time between failures (MTTF) is surprisingly short; according to recent studies, in the majority of Internet backbone paths, the MTTF is 28 days. This leads to a strong requirement for highly dependable networks, servers, and software systems. The challenge is to build interconnected systems, based on available technology, that are inexpensive, accessible, scalable, and dependable. This special section provides insights into a number of these exciting challenges

    HT-Paxos: High Throughput State-Machine Replication Protocol for Large Clustered Data Centers

    Get PDF
    Paxos is a prominent theory of state machine replication. Recent data intensive Systems those implement state machine replication generally require high throughput. Earlier versions of Paxos as few of them are classical Paxos, fast Paxos and generalized Paxos have a major focus on fault tolerance and latency but lacking in terms of throughput and scalability. A major reason for this is the heavyweight leader. Through offloading the leader, we can further increase throughput of the system. Ring Paxos, Multi Ring Paxos and S-Paxos are few prominent attempts in this direction for clustered data centers. In this paper, we are proposing HT-Paxos, a variant of Paxos that one is the best suitable for any large clustered data center. HT-Paxos further offloads the leader very significantly and hence increases the throughput and scalability of the system. While at the same time, among high throughput state-machine replication protocols, HT-Paxos provides reasonably low latency and response time

    Designing application software in wide area network settings

    Get PDF
    Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described

    Fault Tolerant Adaptive Parallel and Distributed Simulation through Functional Replication

    Full text link
    This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation (PADS) models, which are needed to properly simulate and analyze complex systems arising in any kind of scientific or engineering field. PADS takes advantage of multiple execution units run in multicore processors, cluster of workstations or HPC systems. However, large computing systems, such as HPC systems that include hundreds of thousands of computing nodes, have to handle frequent failures of some components. To cope with this issue, FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some protection against Byzantine failures, since interaction messages among the simulated entities are replicated as well, so that the receiving entity can identify and discard corrupted messages. Results from an analytical model and from an experimental evaluation show that FT-GAIA provides a high degree of fault tolerance, at the cost of a moderate increase in the computational load of the execution units.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0731
    • …
    corecore