17,296 research outputs found

    A characterization of switched linear control systems with finite L 2 -gain

    Get PDF
    Motivated by an open problem posed by J.P. Hespanha, we extend the notion of Barabanov norm and extremal trajectory to classes of switching signals that are not closed under concatenation. We use these tools to prove that the finiteness of the L2-gain is equivalent, for a large set of switched linear control systems, to the condition that the generalized spectral radius associated with any minimal realization of the original switched system is smaller than one

    Balanced truncation for linear switched systems

    Full text link
    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems. This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems. Specifically in this paper, we provide a bound on the approximation error in L2 norm for continuous-time and l2 norm for discrete-time linear switched systems. We provide a system theoretic interpretation of grammians and their singular values. Furthermore, we show that the performance of bal- anced truncation depends only on the input-output map and not on the choice of the state-space representation. For a class of stable discrete-time linear switched systems (so called strongly stable systems), we define nice controllability and nice observability grammians, which are genuinely related to reachability and controllability of switched systems. In addition, we show that quadratic stability and LMI estimates of the L2 and l2 gains depend only on the input-output map.Comment: We have corrected a number of typos and inconsistencies. In addition, we added new results in Theorem

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    Large-signal stability conditions for semi-quasi-Z-source inverters: switched and averaged models

    Full text link
    The recently introduced semi-quasi-Z-source in- verter can be interpreted as a DC-DC converter whose input- output voltage gain may take any value between minus infinity and 1 depending on the applied duty cycle. In order to generate a sinusoidal voltage waveform at the output of this converter, a time-varying duty cycle needs to be applied. Application of a time-varying duty cycle that produces large-signal behavior requires careful consideration of stability issues. This paper provides stability results for both the large-signal averaged and the switched models of the semi-quasi-Z-source inverter operating in continuous conduction mode. We show that if the load is linear and purely resistive then the boundedness and ultimate boundedness of the state trajectories is guaranteed provided some reasonable operation conditions are ensured. These conditions amount to keeping the duty cycle away from the extreme values 0 or 1 (averaged and switched models), and limiting the maximum PWM switching period (switched model). The results obtained can be used to give theoretical justification to the inverter operation strategy recently proposed by Cao et al. in [1].Comment: Submitted to the IEEE Conf. on Decision and Control, Florence, Italy, 201

    A new solution approach to polynomial LPV system analysis and synthesis

    Get PDF
    Based on sum-of-squares (SOS) decomposition, we propose a new solution approach for polynomial LPV system analysis and control synthesis problems. Instead of solving matrix variables over a positive definite cone, the SOS approach tries to find a suitable decomposition to verify the positiveness of given polynomials. The complexity of the SOS-based numerical method is polynomial of the problem size. This approach also leads to more accurate solutions to LPV systems than most existing relaxation methods. Several examples have been used to demonstrate benefits of the SOS-based solution approach

    μ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time

    Get PDF
    In this article, the model reduction problem for a class of discrete-time polytopic uncertain switched linear systems with average dwell time switching is investigated. The stability criterion for general discrete-time switched systems is first explored, and a μ-dependent approach is then introduced for the considered systems to the model reduction solution. A reduced-order model is constructed and its corresponding existence conditions are derived via LMI formulation. The admissible switching signals and the desired reduced model matrices are accordingly obtained from such conditions such that the resulting model error system is robustly exponentially stable and has an exponential H∞ performance. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results
    corecore