1,268 research outputs found

    L Band Brightness Temperature Observations over a Corn Canopy during the Entire Growth Cycle

    Get PDF
    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (TB) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. In the period May 22 to August 30, ten days of radiometer and ground measurements are available for a corn canopy with a vegetation water content (W) range of 0.0 to 4.3 kg m−2. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using TB measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized TB are employed to invert the H-polarized transmissivity (γh) for the monitored corn growing season

    L Band Brightness Temperature Observations Over a Corn Canopy During the Entire Growth Cycle

    Get PDF
    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T(sub B)) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg/square m, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T(sub B) measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized T(sub B) are employed to invert the H-polarized transmissivity (gamma-h) for the monitored corn growing season

    Modeling L-Band Microwave Emission From Soil-Vegetation System

    Get PDF
    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T¬B) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg m-2, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T¬B measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized TB are employed to invert the H-polarized transmissivity (γh) for the monitored corn growing season

    Soil Moisture Workshop

    Get PDF
    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Modeling of vegetation canopy reflectance: Status, issues and recommended future strategy

    Get PDF
    Various technical issues related to mapping of vegetative type, condition and stage of maturity, utilizing remotely sensed spectral data are reviewed. The existing knowledge base of models, especially of radiative properties of the vegetation canopy and atmosphere, is reviewed to establish the state of the art for addressing the problem of vegetation mapping. Activities to advance the state of the art are recommended. They include working on canopy reflectance and atmospheric scattering models, and field measurements of canopy reflectance as well as of canopy components. Leaf area index (LAI) and solar radiation interception (SRI) are identified as the two most important vegetation variables requiring further investigation. It is recommended that activities related to sensing them or understanding their relationships with measurable variables, should be encouraged and supported

    Soil Moisture Retrieval During a Corn Growth Cycle using L-band (1.6 GHz) Radar Observations

    Get PDF
    New opportunities for large-scale soil moisture monitoring will emerge with the launch of two low frequency (L-band 1.4 GHz) radiometers: the Aquarius mission in 2009 and the Soil Moisture and Ocean Salinity (SMOS) mission in 2008. Soil moisture is an important land surface variable affecting water and heat exchanges between atmosphere, land surface and deeper ground water reservoirs. The data products from these sensors provide valuable information in a range of climate and hydrologic applications (e.g., nume~cal weather prediction, drought monitoring, flood forecasting, water resources management, etc.). This paper describes a unique data set that was collected during a field campaign at OPE^ (Optimizing Production Inputs for Economic and Environmental Enhancements) site in Beltsville, Maryland throughout the eompj2ete corn growing in 2002. This investigation describes a simple methodology to correct active microwave observations for vegetation effects, which could potentially be implemented in a global soil moisture monitoring algorithm. The methodology has been applied to radar observation collected during the entire corn growth season and validation against ground measurements showed that the top 5-cm soil moisture can be retrieved with an accuracy up to 0.033 [cu cm/cu cm] depending on the sensing configuration

    Comparison of SMOS vegetation optical thickness data with the proposed SMAP algorithm

    Get PDF
    Soil moisture is important to agriculture, weather, and climate. Current soil moisture networks measure at single points, while large spatial averages are needed for some crop, weather, and climate models. Large spatial average soil moisture can be measured by microwave satellites. Two missions, the European Space Agency\u27s Soil Moisture Ocean Salinity mission (SMOS) and NASA\u27s Soil Moisture Active Passive mission (SMAP), can or will measure L-band microwave radiation, which can see through denser vegetation and deeper in to the soil than previous missions that used X-band or C-band measurements. Both SMOS and SMAP require knowledge of vegetation optical thickness (Ï„) to retrieve soil moisture. SMOS is able to measure Ï„ directly through multi-angular measurements. SMAP, which will measure at a single incidence angle, requires an outside source of Ï„ data. The current SMAP baseline algorithm will use a climatology of optical vegetation measurements, the normalized difference vegetation index (NDVI), to estimate Ï„. SMAP will convert the NDVI climatology to vegetation water content (VWC), then convert VWC to Ï„ through the b parameter. This dissertation aimed to validate SMOS Ï„ using county crop yield estimates in Iowa. SMOS Ï„ was found to be noisy while still having a clear response to vegetation. Counties with higher yields had higher increases in $tau; over growing seasons, so it appears that SMOS Ï„ is valid during the growing season. However, SMOS Ï„ had odd behavior outside of growing seasons which can be attributed to soil tillage and residue management. Next, this dissertation attempted to estimate values of the b parameter at the satellite scale using SMOS Ï„ data, county crop yields, and allometric relationships, such as harvest index. A new allometric relationship was defined, theta_gv_max, which is the ratio of maximum VWC to maximum dry biomass. While uncertainty in the estimated values of b was large, the values were close in magnitude to those found in literature for field-based studies. Finally, this dissertation compared SMOS Ï„ to Ï„ from SMAP\u27s NDVI-based algorithm. At the peak of the growing season, SMAP Ï„ was similar in timing to SMOS Ï„, while SMAP Ï„ was larger in magnitude than SMOS Ï„. The larger SMAP Ï„ could be attributed to SMAP\u27s handling of vegetation scattering in its soil moisture retrieval algorithm. For one example case, the difference between SMAP Ï„ and SMOS Ï„ at the peak of the growing season did not appear to cause a large difference in retrieved soil moisture
    • …
    corecore