193 research outputs found

    Structured backward errors for eigenvalues of linear port-Hamiltonian descriptor systems

    Full text link
    When computing the eigenstructure of matrix pencils associated with the passivity analysis of perturbed port-Hamiltonian descriptor system using a structured generalized eigenvalue method, one should make sure that the computed spectrum satisfies the symmetries that corresponds to this structure and the underlying physical system. We perform a backward error analysis and show that for matrix pencils associated with port-Hamiltonian descriptor systems and a given computed eigenstructure with the correct symmetry structure there always exists a nearby port-Hamiltonian descriptor system with exactly that eigenstructure. We also derive bounds for how near this system is and show that the stability radius of the system plays a role in that bound

    Bounded real lemmas for positive descriptor systems

    Get PDF
    A well known result in the theory of linear positive systems is the existence of positive definite diagonal matrix (PDDM) solutions to some well known linear matrix inequalities (LMIs). In this paper, based on the positivity characterization, a novel bounded real lemma for continuous positive descriptor systems in terms of strict LMI is first established by the separating hyperplane theorem. The result developed here provides a necessary and sufficient condition for systems to possess H?H? norm less than ? and shows the existence of PDDM solution. Moreover, under certain condition, a simple model reduction method is introduced, which can preserve positivity, stability and H?H? norm of the original systems. An advantage of such method is that systems? matrices of the reduced order systems do not involve solving of LMIs conditions. Then, the obtained results are extended to discrete case. Finally, a numerical example is given to illustrate the effectiveness of the obtained results

    Efficient Solution of Large-Scale Algebraic Riccati Equations Associated with Index-2 DAEs via the Inexact Low-Rank Newton-ADI Method

    Full text link
    This paper extends the algorithm of Benner, Heinkenschloss, Saak, and Weichelt: An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations, Applied Numerical Mathematics Vol.~108 (2016), pp.~125--142, doi:10.1016/j.apnum.2016.05.006 to Riccati equations associated with Hessenberg index-2 Differential Algebratic Equation (DAE) systems. Such DAE systems arise, e.g., from semi-discretized, linearized (around steady state) Navier-Stokes equations. The solution of the associated Riccati equation is important, e.g., to compute feedback laws that stabilize the Navier-Stokes equations. Challenges in the numerical solution of the Riccati equation arise from the large-scale of the underlying systems and the algebraic constraint in the DAE system. These challenges are met by a careful extension of the inexact low-rank Newton-ADI method to the case of DAE systems. A main ingredient in the extension to the DAE case is the projection onto the manifold described by the algebraic constraints. In the algorithm, the equations are never explicitly projected, but the projection is only applied as needed. Numerical experience indicates that the algorithmic choices for the control of inexactness and line-search can help avoid subproblems with matrices that are only marginally stable. The performance of the algorithm is illustrated on a large-scale Riccati equation associated with the stabilization of Navier-Stokes flow around a cylinder.Comment: 21 pages, 2 figures, 4 table
    • …
    corecore