83,464 research outputs found

    Structural properties of 1-planar graphs and an application to acyclic edge coloring

    Full text link
    A graph is called 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we establish a local property of 1-planar graphs which describes the structure in the neighborhood of small vertices (i.e. vertices of degree no more than seven). Meanwhile, some new classes of light graphs in 1-planar graphs with the bounded degree are found. Therefore, two open problems presented by Fabrici and Madaras [The structure of 1-planar graphs, Discrete Mathematics, 307, (2007), 854-865] are solved. Furthermore, we prove that each 1-planar graph GG with maximum degree Δ(G)\Delta(G) is acyclically edge LL-choosable where L=max{2Δ(G)2,Δ(G)+83}L=\max\{2\Delta(G)-2,\Delta(G)+83\}.Comment: Please cite this published article as: X. Zhang, G. Liu, J.-L. Wu. Structural properties of 1-planar graphs and an application to acyclic edge coloring. Scientia Sinica Mathematica, 2010, 40, 1025--103

    Improved Distributed Algorithms for Exact Shortest Paths

    Full text link
    Computing shortest paths is one of the central problems in the theory of distributed computing. For the last few years, substantial progress has been made on the approximate single source shortest paths problem, culminating in an algorithm of Becker et al. [DISC'17] which deterministically computes (1+o(1))(1+o(1))-approximate shortest paths in O~(D+n)\tilde O(D+\sqrt n) time, where DD is the hop-diameter of the graph. Up to logarithmic factors, this time complexity is optimal, matching the lower bound of Elkin [STOC'04]. The question of exact shortest paths however saw no algorithmic progress for decades, until the recent breakthrough of Elkin [STOC'17], which established a sublinear-time algorithm for exact single source shortest paths on undirected graphs. Shortly after, Huang et al. [FOCS'17] provided improved algorithms for exact all pairs shortest paths problem on directed graphs. In this paper, we present a new single-source shortest path algorithm with complexity O~(n3/4D1/4)\tilde O(n^{3/4}D^{1/4}). For polylogarithmic DD, this improves on Elkin's O~(n5/6)\tilde{O}(n^{5/6}) bound and gets closer to the Ω~(n1/2)\tilde{\Omega}(n^{1/2}) lower bound of Elkin [STOC'04]. For larger values of DD, we present an improved variant of our algorithm which achieves complexity O~(n3/4+o(1)+min{n3/4D1/6,n6/7}+D)\tilde{O}\left( n^{3/4+o(1)}+ \min\{ n^{3/4}D^{1/6},n^{6/7}\}+D\right), and thus compares favorably with Elkin's bound of O~(n5/6+n2/3D1/3+D)\tilde{O}(n^{5/6} + n^{2/3}D^{1/3} + D ) in essentially the entire range of parameters. This algorithm provides also a qualitative improvement, because it works for the more challenging case of directed graphs (i.e., graphs where the two directions of an edge can have different weights), constituting the first sublinear-time algorithm for directed graphs. Our algorithm also extends to the case of exact κ\kappa-source shortest paths...Comment: 26 page

    Planar graphs as L-intersection or L-contact graphs

    Full text link
    The L-intersection graphs are the graphs that have a representation as intersection graphs of axis parallel shapes in the plane. A subfamily of these graphs are {L, |, --}-contact graphs which are the contact graphs of axis parallel L, |, and -- shapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are L-intersection graphs, and that triangle-free planar graphs are {L, |, --}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs

    On the Fiedler value of large planar graphs

    Get PDF
    The Fiedler value λ2\lambda_2, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs GG with nn vertices, denoted by λ2max\lambda_{2\max}, and we show the bounds 2+Θ(1n2)λ2max2+O(1n)2+\Theta(\frac{1}{n^2}) \leq \lambda_{2\max} \leq 2+O(\frac{1}{n}). We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex degree~3, and outerplanar graphs. Furthermore, we derive almost tight bounds on λ2max\lambda_{2\max} for two more classes of graphs, those of bounded genus and KhK_h-minor-free graphs.Comment: 21 pages, 4 figures, 1 table. Version accepted in Linear Algebra and Its Application

    On defensive alliances and line graphs

    Get PDF
    Let Γ\Gamma be a simple graph of size mm and degree sequence δ1δ2...δn\delta_1\ge \delta_2\ge ... \ge \delta_n. Let L(Γ){\cal L}(\Gamma) denotes the line graph of Γ\Gamma. The aim of this paper is to study mathematical properties of the alliance number, a(L(Γ){a}({\cal L}(\Gamma), and the global alliance number, γa(L(Γ))\gamma_{a}({\cal L}(\Gamma)), of the line graph of a simple graph. We show that δn+δn112a(L(Γ))δ1.\lceil\frac{\delta_{n}+\delta_{n-1}-1}{2}\rceil \le {a}({\cal L}(\Gamma))\le \delta_1. In particular, if Γ\Gamma is a δ\delta-regular graph (δ>0\delta>0), then a(L(Γ))=δa({\cal L}(\Gamma))=\delta, and if Γ\Gamma is a (δ1,δ2)(\delta_1,\delta_2)-semiregular bipartite graph, then a(L(Γ))=δ1+δ212a({\cal L}(\Gamma))=\lceil \frac{\delta_1+\delta_2-1}{2} \rceil. As a consequence of the study we compare a(L(Γ))a({\cal L}(\Gamma)) and a(Γ){a}(\Gamma), and we characterize the graphs having a(L(Γ))<4a({\cal L}(\Gamma))<4. Moreover, we show that the global-connected alliance number of L(Γ){\cal L}(\Gamma) is bounded by γca(L(Γ))D(Γ)+m11,\gamma_{ca}({\cal L}(\Gamma)) \ge \lceil\sqrt{D(\Gamma)+m-1}-1\rceil, where D(Γ)D(\Gamma) denotes the diameter of Γ\Gamma, and we show that the global alliance number of L(Γ){\cal L}(\Gamma) is bounded by γa(L(Γ))2mδ1+δ2+1\gamma_{a}({\cal L}(\Gamma))\geq \lceil\frac{2m}{\delta_{1}+\delta_{2}+1}\rceil. The case of strong alliances is studied by analogy
    corecore