2,504 research outputs found

    Tree-structured complementary filter banks using all-pass sections

    Get PDF
    Tree-structured complementary filter banks are developed with transfer functions that are simultaneously all-pass complementary and power complementary. Using a formulation based on unitary transforms and all-pass functions, we obtain analysis and synthesis filter banks which are related through a transposition operation, such that the cascade of analysis and synthesis filter banks achieves an all-pass function. The simplest structure is obtained using a Hadamard transform, which is shown to correspond to a binary tree structure. Tree structures can be generated for a variety of other unitary transforms as well. In addition, given a tree-structured filter bank where the number of bands is a power of two, simple methods are developed to generate complementary filter banks with an arbitrary number of channels, which retain the transpose relationship between analysis and synthesis banks, and allow for any combination of bandwidths. The structural properties of the filter banks are illustrated with design examples, and multirate applications are outlined

    On block coherence of frames

    Get PDF
    Block coherence of matrices plays an important role in analyzing the performance of block compressed sensing recovery algorithms (Bajwa and Mixon, 2012). In this paper, we characterize two block coherence metrics: worst-case and average block coherence. First, we present lower bounds on worst-case block coherence, in both the general case and also when the matrix is constrained to be a union of orthobases. We then present deterministic matrix constructions based upon Kronecker products which obtain these lower bounds. We also characterize the worst-case block coherence of random subspaces. Finally, we present a flipping algorithm that can improve the average block coherence of a matrix, while maintaining the worst-case block coherence of the original matrix. We provide numerical examples which demonstrate that our proposed deterministic matrix construction performs well in block compressed sensing

    Statistical mechanical analysis of the Kronecker channel model for MIMO wireless communication

    Full text link
    The Kronecker channel model of wireless communication is analyzed using statistical mechanics methods. In the model, spatial proximities among transmission/reception antennas are taken into account as certain correlation matrices, which generally yield non-trivial dependence among symbols to be estimated. This prevents accurate assessment of the communication performance by naively using a previously developed analytical scheme based on a matrix integration formula. In order to resolve this difficulty, we develop a formalism that can formally handle the correlations in Kronecker models based on the known scheme. Unfortunately, direct application of the developed scheme is, in general, practically difficult. However, the formalism is still useful, indicating that the effect of the correlations generally increase after the fourth order with respect to correlation strength. Therefore, the known analytical scheme offers a good approximation in performance evaluation when the correlation strength is sufficiently small. For a class of specific correlation, we show that the performance analysis can be mapped to the problem of one-dimensional spin systems in random fields, which can be investigated without approximation by the belief propagation algorithm

    Efficient Quantum Transforms

    Full text link
    Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include re-development of the networks for computing the Walsh-Hadamard and the quantum Fourier transform. New networks for two wavelet transforms are given. Quantum computation of Fourier transforms for non-Abelian groups is defined. A slightly relaxed definition is shown to simplify the analysis and the networks that computes the transforms. Efficient networks for computing such transforms for a class of metacyclic groups are introduced. A novel network for computing a Fourier transform for a group used in quantum error-correction is also given.Comment: 30 pages, LaTeX2e, 7 figures include

    About Notations in Multiway Array Processing

    Full text link
    This paper gives an overview of notations used in multiway array processing. We redefine the vectorization and matricization operators to comply with some properties of the Kronecker product. The tensor product and Kronecker product are also represented with two different symbols, and it is shown how these notations lead to clearer expressions for multiway array operations. Finally, the paper recalls the useful yet widely unknown properties of the array normal law with suggested notations
    • 

    corecore