2,386 research outputs found

    Fast Hadamard transforms for compressive sensing of joint systems: measurement of a 3.2 million-dimensional bi-photon probability distribution

    Get PDF
    We demonstrate how to efficiently implement extremely high-dimensional compressive imaging of a bi-photon probability distribution. Our method uses fast-Hadamard-transform Kronecker-based compressive sensing to acquire the joint space distribution. We list, in detail, the operations necessary to enable fast-transform-based matrix-vector operations in the joint space to reconstruct a 16.8 million-dimensional image in less than 10 minutes. Within a subspace of that image exists a 3.2 million-dimensional bi-photon probability distribution. In addition, we demonstrate how the marginal distributions can aid in the accuracy of joint space distribution reconstructions

    Stable, Robust and Super Fast Reconstruction of Tensors Using Multi-Way Projections

    Get PDF
    In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction formula that allows one to recover an NNth-order (I1×I2×⋯×IN)(I_1\times I_2\times \cdots \times I_N) data tensor X‾\underline{\mathbf{X}} from a reduced set of multi-way compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements taken only in two selected modes, independently of the tensor order NN. In addition, it is proved that, in the matrix case and in a particular case with 33rd-order tensors where the same 2D sensor operator is applied to all mode-3 slices, the proposed reconstruction X‾τ\underline{\mathbf{X}}_\tau is stable in the sense that the approximation error is comparable to the one provided by the best low-multilinear-rank approximation, where τ\tau is a threshold parameter that controls the approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D case, an optimal value for the threshold parameter τ=τ0>0\tau=\tau_0 > 0 exists, which is confirmed by our simulation results. On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained using τ=0\tau=0, which means that this parameter does not need to be tuned. Our extensive simulation results demonstrate the stability and robustness of the method when it is applied to real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic of the proposed method is that it provides a direct computation, i.e. it is non-iterative in contrast to all existing sparsity based CS algorithms, thus providing super fast computations, even for large datasets.Comment: Submitted to IEEE Transactions on Signal Processin
    • …
    corecore