6,544 research outputs found

    Kripke Models for Classical Logic

    Get PDF
    We introduce a notion of Kripke model for classical logic for which we constructively prove soundness and cut-free completeness. We discuss the novelty of the notion and its potential applications

    Some Epistemic Extensions of G\"odel Fuzzy Logic

    Full text link
    In this paper, we introduce some epistemic extensions of G\"odel fuzzy logic whose Kripke-based semantics have fuzzy values for both propositions and accessibility relations such that soundness and completeness hold. We adopt belief as our epistemic operator, then survey some fuzzy implications to justify our semantics for belief is appropriate. We give a fuzzy version of traditional muddy children problem and apply it to show that axioms of positive and negative introspections and Truth are not necessarily valid in our basic epistemic fuzzy models. In the sequel, we propose a derivation system KFK_F as a fuzzy version of classical epistemic logic KK. Next, we establish some other epistemic-fuzzy derivation systems BF,TF,BFn B_F, T_F, B_F^n and TFnT_F^n which are extensions of KFK_F, and prove that all of these derivation systems are sound and complete with respect to appropriate classes of Kripke-based models

    Kripke Semantics for Fuzzy Logics

    Get PDF
    Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example, intuitionistic logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the basic logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models could provide a semantics for fuzzy logics. For each axiom of the basic fuzzy logic, necessary and sufficient conditions are sought for Kripke frames/models which satisfy them. It turns out that the only fuzzy logics (logics containing the basic fuzzy logic) which are sound and complete with respect to a class of Kripke frames/models are the extensions of the Gödel logic (or the super-intuitionistic logic of Dummett); indeed this logic is sound and strongly complete with respect to reflexive, transitive and connected (linear) Kripke frames (with persistent satisfaction relations). This provides a semantic characterization for the Gödel logic among (propositional) fuzzy logics

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Some Remarks on the Model Theory of Epistemic Plausibility Models

    Full text link
    Classical logics of knowledge and belief are usually interpreted on Kripke models, for which a mathematically well-developed model theory is available. However, such models are inadequate to capture dynamic phenomena. Therefore, epistemic plausibility models have been introduced. Because these are much richer structures than Kripke models, they do not straightforwardly inherit the model-theoretical results of modal logic. Therefore, while epistemic plausibility structures are well-suited for modeling purposes, an extensive investigation of their model theory has been lacking so far. The aim of the present paper is to fill exactly this gap, by initiating a systematic exploration of the model theory of epistemic plausibility models. Like in 'ordinary' modal logic, the focus will be on the notion of bisimulation. We define various notions of bisimulations (parametrized by a language L) and show that L-bisimilarity implies L-equivalence. We prove a Hennesy-Milner type result, and also two undefinability results. However, our main point is a negative one, viz. that bisimulations cannot straightforwardly be generalized to epistemic plausibility models if conditional belief is taken into account. We present two ways of coping with this issue: (i) adding a modality to the language, and (ii) putting extra constraints on the models. Finally, we make some remarks about the interaction between bisimulation and dynamic model changes.Comment: 19 pages, 3 figure

    A (Co)algebraic Approach to Hennessy-Milner Theorems for Weakly Expressive Logics

    Get PDF
    Coalgebraic modal logic, as in [9, 6], is a framework in which modal logics for specifying coalgebras can be developed parametric in the signature of the modal language and the coalgebra type functor T. Given a base logic (usually classical propositional logic), modalities are interpreted via so-called predicate liftings for the functor T. These are natural transformations that turn a predicate over the state space X into a predicate over TX. Given that T-coalgebras come with general notions of T-bisimilarity [11] and behavioral equivalence [7], coalgebraic modal logics are designed to respect those. In particular, if two states are behaviourally equivalent then they satisfy the same formulas. If the converse holds, then the logic is said to be expressive. and we have a generalisation of the classic Hennessy-Milner theorem [5] which states that over the class of image-fjnite Kripke models, two states are Kripke bisimilar if and only if they satisfy the same formulas in Hennessy-Milner logic
    • …
    corecore