984 research outputs found

    Constrained optimization in simulation: a novel approach.

    Get PDF
    This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the simulation inputs must meet prespeci¯ed constraints including the constraint that the inputs be integer. The proposed heuristic combines (i) experimental design to specify the simulation input combinations, (ii) Kriging (also called spatial correlation modeling) to analyze the global simulation input/output data that result from this experimental design, and (iii) integer nonlinear programming to estimate the optimal solution from the Kriging metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center simulation model, and compared with the popular commercial heuristic OptQuest embedded in the ARENA versions 11 and 12. These two applications show that the novel heuristic outperforms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and consistency of the solution quality.

    Constrained Optimization in Simulation: A Novel Approach

    Get PDF
    This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the simulation inputs must meet prespeci¯ed constraints including the constraint that the inputs be integer. The proposed heuristic combines (i) experimental design to specify the simulation input combinations, (ii) Kriging (also called spatial correlation mod- eling) to analyze the global simulation input/output data that result from this experimental design, and (iii) integer nonlinear programming to estimate the optimal solution from the Krig- ing metamodels. The heuristic is applied to an (s, S) inventory system and a realistic call-center simulation model, and compared with the popular commercial heuristic OptQuest embedded in the ARENA versions 11 and 12. These two applications show that the novel heuristic outper- forms OptQuest in terms of search speed (it moves faster towards high-quality solutions) and consistency of the solution quality.

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Automatic surrogate model type selection during the optimization of expensive black-box problems

    Get PDF
    The use of Surrogate Based Optimization (SBO) has become commonplace for optimizing expensive black-box simulation codes. A popular SBO method is the Efficient Global Optimization (EGO) approach. However, the performance of SBO methods critically depends on the quality of the guiding surrogate. In EGO the surrogate type is usually fixed to Kriging even though this may not be optimal for all problems. In this paper the authors propose to extend the well-known EGO method with an automatic surrogate model type selection framework that is able to dynamically select the best model type (including hybrid ensembles) depending on the data available so far. Hence, the expected improvement criterion will always be based on the best approximation available at each step of the optimization process. The approach is demonstrated on a structural optimization problem, i.e., reducing the stress on a truss-like structure. Results show that the proposed algorithm consequently finds better optimums than traditional kriging-based infill optimization

    Design of Experiments: An Overview

    Get PDF
    Design Of Experiments (DOE) is needed for experiments with real-life systems, and with either deterministic or random simulation models. This contribution discusses the different types of DOE for these three domains, but focusses on random simulation. DOE may have two goals: sensitivity analysis including factor screening and optimization. This contribution starts with classic DOE including 2k-p and Central Composite designs. Next, it discusses factor screening through Sequential Bifurcation. Then it discusses Kriging including Latin Hyper cube Sampling and sequential designs. It ends with optimization through Generalized Response Surface Methodology and Kriging combined with Mathematical Programming, including Taguchian robust optimization.simulation;sensitivity analysis;optimization;factor screening;Kriging;RSM;Taguchi

    Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62

    Get PDF
    This article uses a sequentialized experimental design to select simulation input com- binations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code). This design and analysis adapt the clas- sic "expected improvement" (EI) in "efficient global optimization" (EGO) through the introduction of an unbiased estimator of the Kriging predictor variance; this estimator uses parametric bootstrapping. Classic EI and bootstrapped EI are com- pared through various test functions, including the six-hump camel-back and several Hartmann functions. These empirical results demonstrate that in some applications bootstrapped EI finds the global optimum faster than classic EI does; in general, however, the classic EI may be considered to be a robust global optimizer.Simulation;Optimization;Kriging;Bootstrap

    Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas

    Get PDF
    Accurate and fast models are indispensable in contemporary antenna design. In this paper, we describe the low-cost antenna modeling methodology involving variable-fidelity electromagnetic (EM) simulations and co-Kriging. Our approach exploits sparsely sampled accurate (high-fidelity) EM data as well as densely sampled coarse-discretization (low-fidelity) EM simulations that are accommodated into one model using the co-Kriging technique. By using coarse-discretization simulations, the computational cost of creating the antenna model is greatly reduced compared to conventional approaches, where high-fidelity simulations are directly used to set up the model. At the same time, the modeling accuracy is not compromised. The proposed technique is demonstrated using three examples of antenna structures. Comparisons with conventional modeling based on high-fidelity data approximation, as well as applications for antenna design, are also discussed
    corecore