17 research outputs found

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Uniscale and multiscale gait recognition in realistic scenario

    Get PDF
    The performance of a gait recognition method is affected by numerous challenging factors that degrade its reliability as a behavioural biometrics for subject identification in realistic scenario. Thus for effective visual surveillance, this thesis presents five gait recog- nition methods that address various challenging factors to reliably identify a subject in realistic scenario with low computational complexity. It presents a gait recognition method that analyses spatio-temporal motion of a subject with statistical and physical parameters using Procrustes shape analysis and elliptic Fourier descriptors (EFD). It introduces a part- based EFD analysis to achieve invariance to carrying conditions, and the use of physical parameters enables it to achieve invariance to across-day gait variation. Although spatio- temporal deformation of a subject’s shape in gait sequences provides better discriminative power than its kinematics, inclusion of dynamical motion characteristics improves the iden- tification rate. Therefore, the thesis presents a gait recognition method which combines spatio-temporal shape and dynamic motion characteristics of a subject to achieve robust- ness against the maximum number of challenging factors compared to related state-of-the- art methods. A region-based gait recognition method that analyses a subject’s shape in image and feature spaces is presented to achieve invariance to clothing variation and carry- ing conditions. To take into account of arbitrary moving directions of a subject in realistic scenario, a gait recognition method must be robust against variation in view. Hence, the the- sis presents a robust view-invariant multiscale gait recognition method. Finally, the thesis proposes a gait recognition method based on low spatial and low temporal resolution video sequences captured by a CCTV. The computational complexity of each method is analysed. Experimental analyses on public datasets demonstrate the efficacy of the proposed methods

    Clothing and carrying condition invariant gait recognition based on rotation forest

    Get PDF
    This paper proposes a gait recognition method which is invariant to maximum number of challenging factors of gait recognition mainly unpredictable variation in clothing and carrying conditions. The method introduces an averaged gait key-phase image (AGKI) which is computed by averaging each of the five key-phases of the gait periods of a gait sequence. It analyses the AGKIs using high-pass and low-pass Gaussian filters, each at three cut-off frequencies to achieve robustness against unpredictable variation in clothing and carrying conditions in addition to other covariate factors, e.g., walking speed, segmentation noise, shadows under feet and change in hair style and ground surface. The optimal cut-off frequencies of the Gaussian filters are determined based on an analysis of the focus values of filtered human subject’s silhouettes. The method applies rotation forest ensemble learning recognition to enhance both individual accuracy and diversity within the ensemble for improved identification rate. Extensive experiments on public datasets demonstrate the efficacy of the proposed method

    Automatic recognition of military vehicles with Krawtchouk moments

    Get PDF
    The challenge of Automatic Target Recognition (ATR) of military targets within a Synthetic Aperture Radar (SAR) scene is addressed in this paper. The proposed approach exploits the discrete defined Krawtchouk moments, that are able to represent a detected extended target with few features, allowing its characterization. The proposed algorithm provides robust performance for target recognition, identification and characterization, with high reliability in presence of noise and reduced sensitivity to discretization errors. The effectiveness of the proposed approach is demonstrated using the MSTAR dataset

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    Features Mapping Based Human Gait Recognition

    Get PDF
    Gait recognition is the term used for detection of Human based on the features. The Feature extraction and Feature Mapping is the main aspect to recognize the Gestures from the Database of features. Recognition of any individual is a task to identify people. Human recognition methods such as face, fingerprints, and iris generally require a cooperative subject, physical contact or close proximity. These methods are not able to recognize an individual at a distance therefore recognition using gait is relatively new biometric technique without these disadvantages. Human identification using Gait is method to identify an individual by the way he walk or manner of moving on foot. Gait recognition is a type of biometric recognition and related to the behavioral characteristics of biometric recognition. Gait offers ability of distance recognition or at low resolution. This project aims to recognize an individual using his gait features. However the majority of current approaches are model free which is simple and fast but we will use model based approach for feature extraction and for matching of parameters with database sequences. After matching of Features, the Images have been identified and show the dataset from it matched. The Results are accurate and shows efficiency. In this firstly binary silhouette of a walking person is detected from each frame of an image. Then secondly, the features from each frame are extracted using the image processing operation. In the end SVM, K-MEANS and LDA are used for training and testing purpose. Every experiment and test is done on CASIA database. The results in this paper are better and improved from previous results by using SVM , K MEANS. DOI: 10.17762/ijritcc2321-8169.15067

    Gait Recognition: Databases, Representations, and Applications

    No full text
    There has been considerable progress in automatic recognition of people by the way they walk since its inception almost 20 years ago: there is now a plethora of technique and data which continue to show that a person’s walking is indeed unique. Gait recognition is a behavioural biometric which is available even at a distance from a camera when other biometrics may be occluded, obscured or suffering from insufficient image resolution (e.g. a blurred face image or a face image occluded by mask). Since gait recognition does not require subject cooperation due to its non-invasive capturing process, it is expected to be applied for criminal investigation from CCTV footages in public and private spaces. This article introduces current progress, a research background, and basic approaches for gait recognition in the first three sections, and two important aspects of gait recognition, the gait databases and gait feature representations are described in the following sections.Publicly available gait databases are essential for benchmarking individual approaches, and such databases should contain a sufficient number of subjects as well as covariate factors to realize statistically reliable performance evaluation and also robust gait recognition. Gait recognition researchers have therefore built such useful gait databases which incorporate subject diversities and/or rich covariate factors.Gait feature representation is also an important aspect for effective and efficient gait recognition. We describe the two main approaches to representation: model-free (appearance-based) approaches and model-based approaches. In particular, silhouette-based model-free approaches predominate in recent studies and many have been proposed and are described in detail.Performance evaluation results of such recent gait feature representations on two of the publicly available gait databases are reported: USF Human ID with rich covariate factors such as views, surface, bag, shoes, time elapse; and OU-ISIR LP with more than 4,000 subjects. Since gait recognition is suitable for criminal investigation applications of the gait recognition to forensics are addressed with real criminal cases in the application section. Finally, several open problems of the gait recognition are discussed to show future research avenues of the gait recognition
    corecore