8 research outputs found

    Cycle Double Covers and Semi-Kotzig Frame

    Get PDF
    Let HH be a cubic graph admitting a 3-edge-coloring c:E(H)→Z3c: E(H)\to \mathbb Z_3 such that the edges colored by 0 and μ∈{1,2}\mu\in\{1,2\} induce a Hamilton circuit of HH and the edges colored by 1 and 2 induce a 2-factor FF. The graph HH is semi-Kotzig if switching colors of edges in any even subgraph of FF yields a new 3-edge-coloring of HH having the same property as cc. A spanning subgraph HH of a cubic graph GG is called a {\em semi-Kotzig frame} if the contracted graph G/HG/H is even and every non-circuit component of HH is a subdivision of a semi-Kotzig graph. In this paper, we show that a cubic graph GG has a circuit double cover if it has a semi-Kotzig frame with at most one non-circuit component. Our result generalizes some results of Goddyn (1988), and H\"{a}ggkvist and Markstr\"{o}m [J. Combin. Theory Ser. B (2006)]

    Perfect Matching and Circuit Cover of Graphs

    Get PDF
    The research of my dissertation is motivated by the Circuit Double Cover Conjecture due to Szekeres and independently Seymour, that every bridgeless graph G has a family of circuits which covers every edge of G twice. By Fleischner\u27s Splitting Lemma, it suffices to verify the circuit double cover conjecture for bridgeless cubic graphs.;It is well known that every edge-3-colorable cubic graph has a circuit double cover. The structures of edge-3-colorable cubic graphs have strong connections with the circuit double cover conjecture. In chapter two, we consider the structure properties of a special class of edge-3-colorable cubic graphs, which has an edge contained by a unique perfect matching. In chapter three, we prove that if a cubic graph G containing a subdivision of a special class of edge-3-colorable cubic graphs, semi-Kotzig graphs, then G has a circuit double cover.;Circuit extension is an approach posted by Seymour to attack the circuit double cover conjecture. But Fleischer and Kochol found counterexamples to this approach. In chapter four, we post a modified approach, called circuit extension sequence. If a cubic graph G has a circuit extension sequence, then G has a circuit double cover. We verify that all Fleischner\u27s examples and Kochol\u27s examples have a circuit extension sequence, and hence not counterexamples to our approach. Further, we prove that a circuit C of a bridgeless cubic G is extendable if the attachments of all odd Tutte-bridges appear on C consequently.;In the last chapter, we consider the properties of minimum counterexamples to the strong circuit double cover. Applying these properties, we show that if a cubic graph G has a long circuit with at least | V(G)| - 7 vertices, then G has a circuit double cover

    Nowhere-zero flows and structures in cubic graphs

    Get PDF
    Wir widerlegen zwei Vermutungen, die im Zusammenhang mit Kreisüberdeckungen von kubischen Graphen stehen. Die erste Vermutung, welche kubische Graphen mit dominierenden Kreisen betrifft, widerlegen wir durch Erweiterung eines Theorems von Gallai über induzierte eulersche Graphen und durch Konstruktion spezieller snarks. Die zweite Vermutung, welche frames betrifft, widerlegen wir durch Betrachtung der Frage nach der Existenz von speziellen spannenden Teilgraphen in 3-fach zusammenhängenden kubischen Graphen. Weiters übersetzen wir Probleme über Flüsse in kubischen Graphen in Knotenfärbungsprobleme von planaren Graphen und erhalten eine neue Charakterisierung von snarks. Schliesslich verbessern und erweitern wir Resultate über Knotenfärbungsprobleme in Quadrangulierungen. Zu Ende stellen wir neue Vermutungen auf, die im Zusammenhang mit Kreisüberdeckungen und Strukturen in kubischen Graphen stehen.We disprove two conjectures which are related to cycle double cover problems. The first conjecture concerns cubic graphs with dominating cycle. We disprove this conjecture by extending a result of Gallai about induced eulerian subgraphs and by constructing special snarks. The second conjecture concerns frames. We show that this conjecture is false by considering the problem whether every 3-connected cubic graph has a spanning subgraph with certain properties. Moreover, we transform flow-problems of cubic graphs into vertex coloring problems of plane graphs. We obtain thereby a new characterization of snarks. Furthermore, we improve and extend results about vertex coloring problems of quadrangulations. Finally we pose new problems and state conjectures which are related to cycle double covers and structures in cubic graphs

    Subject Index Volumes 1–200

    Get PDF

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore