59 research outputs found

    Computability Theory

    Get PDF
    Computability and computable enumerability are two of the fundamental notions of mathematics. Interest in effectiveness is already apparent in the famous Hilbert problems, in particular the second and tenth, and in early 20th century work of Dehn, initiating the study of word problems in group theory. The last decade has seen both completely new subareas develop as well as remarkable growth in two-way interactions between classical computability theory and areas of applications. There is also a great deal of work on algorithmic randomness, reverse mathematics, computable analysis, and in computable structure theory/computable model theory. The goal of this workshop is to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Kolmogorov complexity and computably enumerable sets

    Full text link
    We study the computably enumerable sets in terms of the: (a) Kolmogorov complexity of their initial segments; (b) Kolmogorov complexity of finite programs when they are used as oracles. We present an extended discussion of the existing research on this topic, along with recent developments and open problems. Besides this survey, our main original result is the following characterization of the computably enumerable sets with trivial initial segment prefix-free complexity. A computably enumerable set AA is KK-trivial if and only if the family of sets with complexity bounded by the complexity of AA is uniformly computable from the halting problem

    Computability Theory (hybrid meeting)

    Get PDF
    Over the last decade computability theory has seen many new and fascinating developments that have linked the subject much closer to other mathematical disciplines inside and outside of logic. This includes, for instance, work on enumeration degrees that has revealed deep and surprising relations to general topology, the work on algorithmic randomness that is closely tied to symbolic dynamics and geometric measure theory. Inside logic there are connections to model theory, set theory, effective descriptive set theory, computable analysis and reverse mathematics. In some of these cases the bridges to seemingly distant mathematical fields have yielded completely new proofs or even solutions of open problems in the respective fields. Thus, over the last decade, computability theory has formed vibrant and beneficial interactions with other mathematical fields. The goal of this workshop was to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work

    Lower bounds on the redundancy in computations from random oracles via betting strategies with restricted wagers

    Get PDF
    The Kučera–GĂĄcs theorem is a landmark result in algorithmic randomness asserting that every real is computable from a Martin-Löf random real. If the computation of the first n bits of a sequence requires n+h(n) bits of the random oracle, then h is the redundancy of the computation. Kučera implicitly achieved redundancy nlog⁥n while GĂĄcs used a more elaborate coding procedure which achieves redundancy View the MathML source. A similar bound is implicit in the later proof by Merkle and Mihailović. In this paper we obtain optimal strict lower bounds on the redundancy in computations from Martin-Löf random oracles. We show that any nondecreasing computable function g such that ∑n2−g(n)=∞ is not a general upper bound on the redundancy in computations from Martin-Löf random oracles. In fact, there exists a real X such that the redundancy g of any computation of X from a Martin-Löf random oracle satisfies ∑n2−g(n)<∞. Moreover, the class of such reals is comeager and includes a View the MathML source real as well as all weakly 2-generic reals. On the other hand, it has been recently shown that any real is computable from a Martin-Löf random oracle with redundancy g, provided that g is a computable nondecreasing function such that ∑n2−g(n)<∞. Hence our lower bound is optimal, and excludes many slow growing functions such as log⁥n from bounding the redundancy in computations from random oracles for a large class of reals. Our results are obtained as an application of a theory of effective betting strategies with restricted wagers which we develop

    Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations

    Get PDF
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic computation and to offer foundations for scientific computing. The dissertation consists of three parts. In the first part, we examine what notion of 'algorithmic computation' underlies each approach and how it is respectively formalised. It is argued that the very existence of the two rival frameworks indicates that 'algorithm' is not one unique concept in mathematics, but it is used in more than one way. We test this hypothesis for consistency with mathematical practice as well as with key foundational works that aim to define the term. As a result, new connections between certain subfields of mathematics and computer science are drawn, and a distinction between 'algorithms' and 'effective procedures' is proposed. In the second part, we focus on the second goal of the two rival approaches to real computation; namely, to provide foundations for scientific computing. We examine both frameworks in detail, what idealisations they employ, and how they relate to floating-point arithmetic systems used in real computers. We explore limitations and advantages of both frameworks, and answer questions about which one is preferable for computational modelling and which one for addressing general computability issues. In the third part, analog computing and its relation to analogue (physical) modelling in science are investigated. Based on some paradigmatic cases of the former, a certain view about the nature of computation is defended, and the indispensable role of representation in it is emphasized and accounted for. We also propose a novel account of the distinction between analog and digital computation and, based on it, we compare analog computational modelling to physical modelling. It is concluded that the two practices, despite their apparent similarities, are orthogonal
    • 

    corecore