1,799 research outputs found

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    Moment-Matching Polynomials

    Full text link
    We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product structure. Our main application is the first polynomial-time algorithm for agnostically learning any function of a constant number of halfspaces with respect to any log-concave distribution (for any constant accuracy parameter). This result was not known even for the case of learning the intersection of two halfspaces without noise. Additionally, we show that in the "smoothed-analysis" setting, the above results hold with respect to distributions that have sub-exponential tails, a property satisfied by many natural and well-studied distributions in machine learning. Given that our algorithms can be implemented using Support Vector Machines (SVMs) with a polynomial kernel, these results give a rigorous theoretical explanation as to why many kernel methods work so well in practice

    Approximating Hereditary Discrepancy via Small Width Ellipsoids

    Full text link
    The Discrepancy of a hypergraph is the minimum attainable value, over two-colorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovasz, Spencer and Vesztergombi (1986) related the natural extension of this quantity to matrices to rounding algorithms for linear programs, and gave a determinant based lower bound on the hereditary discrepancy. Matousek (2011) showed that this bound is tight up to a polylogarithmic factor, leaving open the question of actually computing this bound. Recent work by Nikolov, Talwar and Zhang (2013) showed a polynomial time O~(log3n)\tilde{O}(\log^3 n)-approximation to hereditary discrepancy, as a by-product of their work in differential privacy. In this paper, we give a direct simple O(log3/2n)O(\log^{3/2} n)-approximation algorithm for this problem. We show that up to this approximation factor, the hereditary discrepancy of a matrix AA is characterized by the optimal value of simple geometric convex program that seeks to minimize the largest \ell_{\infty} norm of any point in a ellipsoid containing the columns of AA. This characterization promises to be a useful tool in discrepancy theory

    The complexity of approximating conservative counting CSPs

    Get PDF
    We study the complexity of approximately solving the weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, there is a classification known for the case in which the domain of functions in F is Boolean. In this paper, we give a classification for the more general problem where functions in F have an arbitrary finite domain. We define the notions of weak log-modularity and weak log-supermodularity. We show that if F is weakly log-modular, then #CSP(F)is in FP. Otherwise, it is at least as difficult to approximate as #BIS, the problem of counting independent sets in bipartite graphs. #BIS is complete with respect to approximation-preserving reductions for a logically-defined complexity class #RHPi1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, then we show that #CSP(F) is as easy as a (Boolean) log-supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate. Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is #BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately counting the satisfying assignments of a Boolean formula in conjunctive normal form. We also discuss the algorithmic aspects of our classification.Comment: Minor revisio

    Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications

    Full text link
    We extend the work of Narasimhan and Bilmes [30] for minimizing set functions representable as a difference between submodular functions. Similar to [30], our new algorithms are guaranteed to monotonically reduce the objective function at every step. We empirically and theoretically show that the per-iteration cost of our algorithms is much less than [30], and our algorithms can be used to efficiently minimize a difference between submodular functions under various combinatorial constraints, a problem not previously addressed. We provide computational bounds and a hardness result on the mul- tiplicative inapproximability of minimizing the difference between submodular functions. We show, however, that it is possible to give worst-case additive bounds by providing a polynomial time computable lower-bound on the minima. Finally we show how a number of machine learning problems can be modeled as minimizing the difference between submodular functions. We experimentally show the validity of our algorithms by testing them on the problem of feature selection with submodular cost features.Comment: 17 pages, 8 figures. A shorter version of this appeared in Proc. Uncertainty in Artificial Intelligence (UAI), Catalina Islands, 201

    Smoothed Complexity Theory

    Get PDF
    Smoothed analysis is a new way of analyzing algorithms introduced by Spielman and Teng (J. ACM, 2004). Classical methods like worst-case or average-case analysis have accompanying complexity classes, like P and AvgP, respectively. While worst-case or average-case analysis give us a means to talk about the running time of a particular algorithm, complexity classes allows us to talk about the inherent difficulty of problems. Smoothed analysis is a hybrid of worst-case and average-case analysis and compensates some of their drawbacks. Despite its success for the analysis of single algorithms and problems, there is no embedding of smoothed analysis into computational complexity theory, which is necessary to classify problems according to their intrinsic difficulty. We propose a framework for smoothed complexity theory, define the relevant classes, and prove some first hardness results (of bounded halting and tiling) and tractability results (binary optimization problems, graph coloring, satisfiability). Furthermore, we discuss extensions and shortcomings of our model and relate it to semi-random models.Comment: to be presented at MFCS 201
    corecore