15 research outputs found

    Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Human-machine cooperation in large-scale multimedia retrieval : a survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Video genre categorization and representation using audio-visual information

    Get PDF
    International audienceWe propose an audio-visual approach to video genre classification using content descriptors that exploit audio, color, temporal, and contour information. Audio information is extracted at block-level, which has the advantage of capturing local temporal information. At the temporal structure level, we consider action content in relation to human perception. Color perception is quantified using statistics of color distribution, elementary hues, color properties, and relationships between colors. Further, we compute statistics of contour geometry and relationships. The main contribution of our work lies in harnessingn the descriptive power of the combination of these descriptors in genre classification. Validation was carried out on over 91 h of video footage encompassing 7 common video genres, yielding average precision and recall ratios of 87% to 100% and 77% to 100%, respectively, and an overall average correct classification of up to 97%. Also, experimental comparison as part of the MediaEval 2011 benchmarkingn campaign demonstrated the efficiency of the proposed audiovisual descriptors over other existing approaches. Finally, we discuss a 3-D video browsing platform that displays movies using efaturebased coordinates and thus regroups them according to genre
    corecore