36 research outputs found

    Signal processing and machine learning techniques for human verification based on finger textures

    Get PDF
    PhD ThesisIn recent years, Finger Textures (FTs) have attracted considerable attention as potential biometric characteristics. They can provide robust recognition performance as they have various human-speci c features, such as wrinkles and apparent lines distributed along the inner surface of all ngers. The main topic of this thesis is verifying people according to their unique FT patterns by exploiting signal processing and machine learning techniques. A Robust Finger Segmentation (RFS) method is rst proposed to isolate nger images from a hand area. It is able to detect the ngers as objects from a hand image. An e cient adaptive nger segmentation method is also suggested to address the problem of alignment variations in the hand image called the Adaptive and Robust Finger Segmentation (ARFS) method. A new Multi-scale Sobel Angles Local Binary Pattern (MSALBP) feature extraction method is proposed which combines the Sobel direction angles with the Multi-Scale Local Binary Pattern (MSLBP). Moreover, an enhanced method called the Enhanced Local Line Binary Pattern (ELLBP) is designed to e ciently analyse the FT patterns. As a result, a powerful human veri cation scheme based on nger Feature Level Fusion with a Probabilistic Neural Network (FLFPNN) is proposed. A multi-object fusion method, termed the Finger Contribution Fusion Neural Network (FCFNN), combines the contribution scores of the nger objects. The veri cation performances are examined in the case of missing FT areas. Consequently, to overcome nger regions which are poorly imaged a method is suggested to salvage missing FT elements by exploiting the information embedded within the trained Probabilistic Neural Network (PNN). Finally, a novel method to produce a Receiver Operating Characteristic (ROC) curve from a PNN is suggested. Furthermore, additional development to this method is applied to generate the ROC graph from the FCFNN. Three databases are employed for evaluation: The Hong Kong Polytechnic University Contact-free 3D/2D (PolyU3D2D), Indian Institute of Technology (IIT) Delhi and Spectral 460nm (S460) from the CASIA Multi-Spectral (CASIAMS) databases. Comparative simulation studies con rm the e ciency of the proposed methods for human veri cation. The main advantage of both segmentation approaches, the RFS and ARFS, is that they can collect all the FT features. The best results have been benchmarked for the ELLBP feature extraction with the FCFNN, where the best Equal Error Rate (EER) values for the three databases PolyU3D2D, IIT Delhi and CASIAMS (S460) have been achieved 0.11%, 1.35% and 0%, respectively. The proposed salvage approach for the missing feature elements has the capability to enhance the veri cation performance for the FLFPNN. Moreover, ROC graphs have been successively established from the PNN and FCFNN.the ministry of higher education and scientific research in Iraq (MOHESR); the Technical college of Mosul; the Iraqi Cultural Attach e; the active people in the MOHESR, who strongly supported Iraqi students

    A Novel Multimodal Biometric Authentication System Using Machine Learning and Blockchain

    Get PDF
    Secure user authentication has become an important issue in modern society as in many consumer applications, especially financial transactions, it is extremely important to prove the identity of the user. In this context, biometric authentication methods that rely on physical and behavioural characteristics have been proposed as an alternative for convolutional systems that rely on simple passwords, Personal Identification Number or tokens. However, in real-world applications, authentication systems that involve a single biometric faced many issues, especially lack accuracy and noisy data, which boost the research community to create multibiometric systems that involve a variety of biometrics. Those systems provide better performance and higher accuracy compared to other authentication methods. However, most of them are inconvenient and requires complex interactions from the user. Thus, in this paper, we present a multimodal authentication system that relies on machine learning and blockchain, intending to provide a more reliable, transparent, and convenient authentication mechanism. The proposed system combines tow important biometrics: fingerprint and face with age, and gender features. The supervised learning algorithm Decision Tree has been used to combine the results of the biometrics verification process and produce a confidence level related to the user. The initial experimental results show the efficiency and robustness of the proposed systems

    Building a Strong Undergraduate Research Culture in African Universities

    Get PDF
    Africa had a late start in the race to setting up and obtaining universities with research quality fundamentals. According to Mamdani [5], the first colonial universities were few and far between: Makerere in East Africa, Ibadan and Legon in West Africa. This last place in the race, compared to other continents, has had tremendous implications in the development plans for the continent. For Africa, the race has been difficult from a late start to an insurmountable litany of problems that include difficulty in equipment acquisition, lack of capacity, limited research and development resources and lack of investments in local universities. In fact most of these universities are very recent with many less than 50 years in business except a few. To help reduce the labor costs incurred by the colonial masters of shipping Europeans to Africa to do mere clerical jobs, they started training ―workshops‖ calling them technical or business colleges. According to Mamdani, meeting colonial needs was to be achieved while avoiding the ―Indian disease‖ in Africa -- that is, the development of an educated middle class, a group most likely to carry the virus of nationalism. Upon independence, most of these ―workshops‖ were turned into national ―universities‖, but with no clear role in national development. These national ―universities‖ were catering for children of the new African political elites. Through the seventies and eighties, most African universities were still without development agendas and were still doing business as usual. Meanwhile, governments strapped with lack of money saw no need of putting more scarce resources into big white elephants. By mid-eighties, even the UN and IMF were calling for a limit on funding African universities. In today‘s African university, the traditional curiosity driven research model has been replaced by a market-driven model dominated by a consultancy culture according to Mamdani (Mamdani, Mail and Guardian Online). The prevailing research culture as intellectual life in universities has been reduced to bare-bones classroom activity, seminars and workshops have migrated to hotels and workshop attendance going with transport allowances and per diems (Mamdani, Mail and Guardian Online). There is need to remedy this situation and that is the focus of this paper

    An improved Framework for Biometric Database’s privacy

    Get PDF
    Security and privacy are huge challenges in biometric systems. Biometrics are sensitive data that should be protected from any attacker and especially attackers targeting the confidentiality and integrity of biometric data. In this paper an extensive review of different physiological biometric techniques is provided. A comparative analysis of the various sus mentioned biometrics, including characteristics and properties is conducted. Qualitative and quantitative evaluation of the most relevant physiological biometrics is achieved. Furthermore, we propose a new framework for biometric database privacy. Our approach is based on the use of the promising fully homomorphic encryption technology. As a proof of concept, we establish an initial implementation of our security module using JAVA programming language

    Automated Person Identification Framework Based on Fingernails and Dorsal Knuckle Patterns

    Get PDF
    Hand images are of paramount importance within critical domains like security and criminal investigation. They can sometimes be the only available evidence of an offender’s identity at a crime scene. Approaches to person identification that consider the human hand as a complex object composed of many components are rare. The approach proposed in this paper fills this gap, making use of knuckle creases and fingernail information. It introduces a framework for automatic person identification that includes localisation of the regions of interest within hand images, recognition of the detected components, segmentation of the region of interest using bounding boxes, and similarity matching between a query image and a library of available images. The following hand components are considered: i) the metacarpohalangeal, commonly known as base knuckle; ii) the proximal interphalangeal joint commonly known as major knuckle; iii) distal interphalangeal joint, commonly known as minor knuckle; iv) the interphalangeal joint, commonly known as thumb’s knuckle, and v) the fingernails. A key element of the proposed framework is the similarity matching and an important role for it is played by the feature extraction. In this paper, we exploit end-to-end deep convolutional neural networks to extract discriminative high-level abstract features. We further use BrayCurtis (BC) similarity for the matching process. We validated the proposed approach on well-known benchmarks, the ’11k Hands’ dataset and the Hong Kong Polytechnic University Contactless Hand Dorsal Images known as ’PolyU HD’. We found that the results indicate that the knuckle patterns and fingernails play a significant role in the person identification. The results from the 11K dataset indicate that the results for the left hand are better than the results for the right hand. In both datasets, the fingernails produced consistently higher identification results than other hand components, with a rank-1 score of 93.65% on the ring finger of the left hand for the ’11k Hands’ dataset and rank-1 score of 93.81% for the thumb from the ’PolyU HD’ dataset
    corecore