547 research outputs found

    Horn Renamability and Hypergraphs

    Get PDF
    Satisfiability testing in the context of directed hypergraphs is discussed. A characterization of Horn-renamable formulae is given and a subclass of SAT that belongs to QTRcalPQTR{cal}{P} is described. An algorithm for Horn renaming with linear time complexity is presented

    PURL: A new polynomial-time solvable class of satisfiability

    Get PDF
    In this work a new polynomial-time solvable class of satisfiability PURL ( PropUnit RemoveLiterals) is presented, based on natural extensions of the known con cepts of the l-neighbourhood of a clause and removable literal. The algorithm Remove Literals is also shown which determines if a formula in PURL is satisfiable. The PURL class is a proper superset of all previously known polynomial-time solvable classes. The study of this class is motivated by the resolution of geometric problems.Junta de Andalucía PAI-FQM-016

    On SAT representations of XOR constraints

    Full text link
    We study the representation of systems S of linear equations over the two-element field (aka xor- or parity-constraints) via conjunctive normal forms F (boolean clause-sets). First we consider the problem of finding an "arc-consistent" representation ("AC"), meaning that unit-clause propagation will fix all forced assignments for all possible instantiations of the xor-variables. Our main negative result is that there is no polysize AC-representation in general. On the positive side we show that finding such an AC-representation is fixed-parameter tractable (fpt) in the number of equations. Then we turn to a stronger criterion of representation, namely propagation completeness ("PC") --- while AC only covers the variables of S, now all the variables in F (the variables in S plus auxiliary variables) are considered for PC. We show that the standard translation actually yields a PC representation for one equation, but fails so for two equations (in fact arbitrarily badly). We show that with a more intelligent translation we can also easily compute a translation to PC for two equations. We conjecture that computing a representation in PC is fpt in the number of equations.Comment: 39 pages; 2nd v. improved handling of acyclic systems, free-standing proof of the transformation from AC-representations to monotone circuits, improved wording and literature review; 3rd v. updated literature, strengthened treatment of monotonisation, improved discussions; 4th v. update of literature, discussions and formulations, more details and examples; conference v. to appear LATA 201

    Generalising unit-refutation completeness and SLUR via nested input resolution

    Get PDF
    We introduce two hierarchies of clause-sets, SLUR_k and UC_k, based on the classes SLUR (Single Lookahead Unit Refutation), introduced in 1995, and UC (Unit refutation Complete), introduced in 1994. The class SLUR, introduced in [Annexstein et al, 1995], is the class of clause-sets for which unit-clause-propagation (denoted by r_1) detects unsatisfiability, or where otherwise iterative assignment, avoiding obviously false assignments by look-ahead, always yields a satisfying assignment. It is natural to consider how to form a hierarchy based on SLUR. Such investigations were started in [Cepek et al, 2012] and [Balyo et al, 2012]. We present what we consider the "limit hierarchy" SLUR_k, based on generalising r_1 by r_k, that is, using generalised unit-clause-propagation introduced in [Kullmann, 1999, 2004]. The class UC, studied in [Del Val, 1994], is the class of Unit refutation Complete clause-sets, that is, those clause-sets for which unsatisfiability is decidable by r_1 under any falsifying assignment. For unsatisfiable clause-sets F, the minimum k such that r_k determines unsatisfiability of F is exactly the "hardness" of F, as introduced in [Ku 99, 04]. For satisfiable F we use now an extension mentioned in [Ansotegui et al, 2008]: The hardness is the minimum k such that after application of any falsifying partial assignments, r_k determines unsatisfiability. The class UC_k is given by the clause-sets which have hardness <= k. We observe that UC_1 is exactly UC. UC_k has a proof-theoretic character, due to the relations between hardness and tree-resolution, while SLUR_k has an algorithmic character. The correspondence between r_k and k-times nested input resolution (or tree resolution using clause-space k+1) means that r_k has a dual nature: both algorithmic and proof theoretic. This corresponds to a basic result of this paper, namely SLUR_k = UC_k.Comment: 41 pages; second version improved formulations and added examples, and more details regarding future directions, third version further examples, improved and extended explanations, and more on SLUR, fourth version various additional remarks and editorial improvements, fifth version more explanations and references, typos corrected, improved wordin

    Annales Mathematicae et Informaticae 2021

    Get PDF
    corecore