102,916 research outputs found

    Designing for interaction

    Get PDF
    At present, the design of computer-supported group-based learning (CS)GBL) is often based on subjective decisions regarding tasks, pedagogy and technology, or concepts such as ‘cooperative learning’ and ‘collaborative learning’. Critical review reveals these concepts as insufficiently substantial to serve as a basis for (CS)GBL design. Furthermore, the relationship between outcome and group interaction is rarely specified a priori. Thus, there is a need for a more systematic approach to designing (CS)GBL that focuses on the elicitation of expected interaction processes. A framework for such a process-oriented methodology is proposed. Critical elements that affect interaction are identified: learning objectives, task-type, level of pre-structuring, group size and computer support. The proposed process-oriented method aims to stimulate designers to adopt a more systematic approach to (CS)GBL design according to the interaction expected, while paying attention to critical elements that affect interaction. This approach may bridge the gap between observed quality of interaction and learning outcomes and foster (CS)GBL design that focuses on the heart of the matter: interaction

    The Interplay Between Self-Regulated Professional Learning And Teachers’ Work-Practice

    Get PDF
    This paper explores the relationship between practice and learning in the workplace, by focusing on the case of teachers. It is widely acknowledged that (teacher’s) professional learning is heavily informed by practice, and that an individual’s capacity to self-regulate their learning can improve the quality of learning. However less is known about the precise interplay between practice and self-regulated-learning. This paper integrates existing literature in three areas: professional learning, self-regulated learning and teacher professional development, drawing on recent work describing learning behaviors in informal workplace settings and on Teacher Professional Development. The paper develops a hypothesis on how teachers’ work practice stimulates their learning processes and, at the same time, is informed by their capacity to self-regulate their learning

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Using the Internet to improve university education: Problem-oriented web-based learning and the MUNICS environment

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via Information and Communication Technologies (ICT), and flexible support by tele-tutoring. These principles are used in the Munich Net-based Learning In Computer Science (MUNICS) learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students can model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. E.g., the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applicationsBislang wurden neuere AnsĂ€tze zum web-basierten Lernen in nur geringem Maße zur Verbesserung des UniversitĂ€tsstudiums genutzt. Es werden theoretisch begrĂŒndete Prinzipien fĂŒr die Gestaltung problemorientierter, web-basierter Lernumgebungen an der UniversitĂ€t formuliert. Zu diesen Prinzipien gehören die Nutzung von Multimedia-Technologien fĂŒr die Realisierung authentischer Problemkontexte, die UnterstĂŒtzung der gemeinsamen Wissenskonstruktion, die dynamische Visualisierung, der schnelle Zugang zu weiterfĂŒhrenden Wissensressourcen mit Hilfe von Informations- und Kommunikationstechnologien sowie die flexible UnterstĂŒtzung durch Teletutoring. Diese Prinzipien wurden bei der Gestaltung der MUNICS Lernumgebung umgesetzt. MUNICS soll Studierende der Informatik bei der Wissensanwendung im Kontext komplexer praktischer Problemstellungen unterstĂŒtzen. So können die Studierenden u.a. das Wissensmanagement in einer Bildungsorganisation mit Hilfe eines graphischen Simulationswerkzeugs modellieren. Es werden Ergebnisse einer formativen Evaluationsstudie berichtet und diskutiert. Beispielsweise wird die in der Studie festgestellte Ignoranz der Studierenden gegenĂŒber den weiterfĂŒhrenden Wissensressourcen vor dem Hintergrund des hĂ€ufig berichteten Befunds der unzureichenden Nutzung von Hilfesystemen beleuchte

    Using the Internet to improve university education

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via information and communication technologies, and flexible support by tele-tutoring. These principles are used in the MUNICS learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students may model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. For example, the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applications

    Assessing collaborative learning: big data, analytics and university futures

    Get PDF
    Traditionally, assessment in higher education has focused on the performance of individual students. This focus has been a practical as well as an epistemic one: methods of assessment are constrained by the technology of the day, and in the past they required the completion by individuals under controlled conditions, of set-piece academic exercises. Recent advances in learning analytics, drawing upon vast sets of digitally-stored student activity data, open new practical and epistemic possibilities for assessment and carry the potential to transform higher education. It is becoming practicable to assess the individual and collective performance of team members working on complex projects that closely simulate the professional contexts that graduates will encounter. In addition to academic knowledge this authentic assessment can include a diverse range of personal qualities and dispositions that are key to the computer-supported cooperative working of professionals in the knowledge economy. This paper explores the implications of such opportunities for the purpose and practices of assessment in higher education, as universities adapt their institutional missions to address 21st Century needs. The paper concludes with a strong recommendation for university leaders to deploy analytics to support and evaluate the collaborative learning of students working in realistic contexts

    Fostering collaborative knowledge construction with visualization tools

    Get PDF
    This study investigates to what extent collaborative knowledge construction can be fostered by providing students with visualization tools as structural support. Thirty-two students of Educational Psychology took part in the study. The students were subdivided into dyads and asked to solve a case problem of their learning domain under one of two conditions: 1) with content-specific visualization 2) with content-unspecific visualization. Results show that by being provided with a content-specific visualization tool, both the process and the outcome of the cooperative effort improved. More specifically, dyads under that condition referred to more adequate concepts, risked more conflicts, and were more successful in integrating prior knowledge into the collaborative solution. Moreover, those learning partners had a more similar individual learning outcome
    • 

    corecore