4,905 research outputs found

    An On-line BIST RAM Architecture with Self Repair Capabilities

    Get PDF
    The emerging field of self-repair computing is expected to have a major impact on deployable systems for space missions and defense applications, where high reliability, availability, and serviceability are needed. In this context, RAM (random access memories) are among the most critical components. This paper proposes a built-in self-repair (BISR) approach for RAM cores. The proposed design, introducing minimal and technology-dependent overheads, can detect and repair a wide range of memory faults including: stuck-at, coupling, and address faults. The test and repair capabilities are used on-line, and are completely transparent to the external user, who can use the memory without any change in the memory-access protocol. Using a fault-injection environment that can emulate the occurrence of faults inside the module, the effectiveness of the proposed architecture in terms of both fault detection and repairing capability was verified. Memories of various sizes have been considered to evaluate the area-overhead introduced by this proposed architectur

    Agent Based Test and Repair of Distributed Systems

    Get PDF
    This article demonstrates how to use intelligent agents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (Built-In Self-Test) and BISR (Built-In Self-Repair) facilities. Agents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks. An experimental solution is presented, and future developments of the proposed approach are explore

    FLARE: A design environment for FLASH-based space applications

    Get PDF
    Designing a mass-memory device (i.e., a solid-state recorder) is one of the typical issues of mission-critical space system applications. Flash-memories could be used for this goal: a huge number of parameters and trade-offs need to be explored. Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawback: e.g., their cost is higher than normal hard disk and the number of erasure cycles is bounded. Moreover space environment presents various issues especially because of radiations: different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid-state recorder. No systematic approach has so far been proposed to consider them all as a whole: as a consequence a novel design environment currently under development is aimed at supporting the design of flash-based mass-memory device for space application

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Exploring Design Dimensions in Flash-based Mass-memory Devices

    Get PDF
    Mission-critical space system applications present several issues: a typical one is the design of a mass-memory device (i.e., a solid- state recorder). This goal could be accomplished by using flash- memories: the exploration of a huge number of parameters and trade-offs is needed. On the one hand flash-memories are nonvolatile, shock-resistant and power-economic, but on the other hand their cost is higher than normal hard disk, the number of erasure cycles is bounded and other different drawbacks have to be considered. In addition space environment presents various issues especially because of radiations: the design of a flash- memory based solid-state recorder implies the exploration of different and quite often contrasting dimensions. No systematic approach has so far been proposed to consider them all as a whole: as a consequence the design of flash-based mass-memory device for space applications is intended to be supported by a novel design environment currently under development and refinemen

    Are IEEE 1500 compliant cores really compliant to the standard?

    Get PDF
    Functional verification of complex SoC designs is a challenging task, which fortunately is increasingly supported by automation. This article proposes a verification component for IEEE Std 1500, to be plugged into a commercial verification tool suit

    Digital, memory and mixed-signal test engineering education: five centres of competence in Europe

    Get PDF
    The launching of the EuNICE-Test project was announced two years ago at the first DELTA Conference. This project is now completed and the present paper describes the project actions and outcomes. The original idea was to build a long-lasting European Network for test engineering education using both test resource mutualisation and remote experiments. This objective is fully fulfilled and we have now, in Europe, five centres of competence able to deliver high-level and high-specialized training courses in the field of test engineering using a high-performing industrial ATE. All the centres propose training courses on digital testing, three of them propose mixed-signal trainings and three of them propose memory trainings. Taking into account the demand in test engineering, the network is planned to continue in a stand alone mode after project end. Nevertheless a new European proposal with several new partners and new test lessons is under construction

    Thermal-Safe Test Scheduling for Core-Based System-on-a-Chip Integrated Circuits

    No full text
    Overheating has been acknowledged as a major problem during the testing of complex system-on-chip (SOC) integrated circuits. Several power-constrained test scheduling solutions have been recently proposed to tackle this problem during system integration. However, we show that these approaches cannot guarantee hot-spot-free test schedules because they do not take into account the non-uniform distribution of heat dissipation across the die and the physical adjacency of simultaneously active cores. This paper proposes a new test scheduling approach that is able to produce short test schedules and guarantee thermal-safety at the same time. Two thermal-safe test scheduling algorithms are proposed. The first algorithm computes an exact (shortest) test schedule that is guaranteed to satisfy a given maximum temperature constraint. The second algorithm is a heuristic intended for complex systems with a large number of embedded cores, for which the exact thermal-safe test scheduling algorithm may not be feasible. Based on a low-complexity test session thermal cost model, this algorithm produces near-optimal length test schedules with significantly less computational effort compared to the optimal algorithm
    • 

    corecore