9,116 research outputs found

    Speech Enhancement Modeling Towards Robust Speech Recognition System

    Full text link
    Form about four decades human beings have been dreaming of an intelligent machine which can master the natural speech. In its simplest form, this machine should consist of two subsystems, namely automatic speech recognition (ASR) and speech understanding (SU). The goal of ASR is to transcribe natural speech while SU is to understand the meaning of the transcription. Recognizing and understanding a spoken sentence is obviously a knowledge-intensive process, which must take into account all variable information about the speech communication process, from acoustics to semantics and pragmatics. While developing an Automatic Speech Recognition System, it is observed that some adverse conditions degrade the performance of the Speech Recognition System. In this contribution, speech enhancement system is introduced for enhancing speech signals corrupted by additive noise and improving the performance of Automatic Speech Recognizers in noisy conditions. Automatic speech recognition experiments show that replacing noisy speech signals by the corresponding enhanced speech signals leads to an improvement in the recognition accuracies. The amount of improvement varies with the type of the corrupting noise.Comment: Pages: 04; Conference Proceedings International Conference on Advance Computing (ICAC-2008), Indi

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Writer-Aware CNN for Parsimonious HMM-Based Offline Handwritten Chinese Text Recognition

    Full text link
    Recently, the hybrid convolutional neural network hidden Markov model (CNN-HMM) has been introduced for offline handwritten Chinese text recognition (HCTR) and has achieved state-of-the-art performance. However, modeling each of the large vocabulary of Chinese characters with a uniform and fixed number of hidden states requires high memory and computational costs and makes the tens of thousands of HMM state classes confusing. Another key issue of CNN-HMM for HCTR is the diversified writing style, which leads to model strain and a significant performance decline for specific writers. To address these issues, we propose a writer-aware CNN based on parsimonious HMM (WCNN-PHMM). First, PHMM is designed using a data-driven state-tying algorithm to greatly reduce the total number of HMM states, which not only yields a compact CNN by state sharing of the same or similar radicals among different Chinese characters but also improves the recognition accuracy due to the more accurate modeling of tied states and the lower confusion among them. Second, WCNN integrates each convolutional layer with one adaptive layer fed by a writer-dependent vector, namely, the writer code, to extract the irrelevant variability in writer information to improve recognition performance. The parameters of writer-adaptive layers are jointly optimized with other network parameters in the training stage, while a multiple-pass decoding strategy is adopted to learn the writer code and generate recognition results. Validated on the ICDAR 2013 competition of CASIA-HWDB database, the more compact WCNN-PHMM of a 7360-class vocabulary can achieve a relative character error rate (CER) reduction of 16.6% over the conventional CNN-HMM without considering language modeling. By adopting a powerful hybrid language model (N-gram language model and recurrent neural network language model), the CER of WCNN-PHMM is reduced to 3.17%

    Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data

    Full text link
    It is well known that recognizers personalized to each user are much more effective than user-independent recognizers. With the popularity of smartphones today, although it is not difficult to collect a large set of audio data for each user, it is difficult to transcribe it. However, it is now possible to automatically discover acoustic tokens from unlabeled personal data in an unsupervised way. We therefore propose a multi-task deep learning framework called a phoneme-token deep neural network (PTDNN), jointly trained from unsupervised acoustic tokens discovered from unlabeled data and very limited transcribed data for personalized acoustic modeling. We term this scenario "weakly supervised". The underlying intuition is that the high degree of similarity between the HMM states of acoustic token models and phoneme models may help them learn from each other in this multi-task learning framework. Initial experiments performed over a personalized audio data set recorded from Facebook posts demonstrated that very good improvements can be achieved in both frame accuracy and word accuracy over popularly-considered baselines such as fDLR, speaker code and lightly supervised adaptation. This approach complements existing speaker adaptation approaches and can be used jointly with such techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201

    Unsupervised Discovery of Linguistic Structure Including Two-level Acoustic Patterns Using Three Cascaded Stages of Iterative Optimization

    Full text link
    Techniques for unsupervised discovery of acoustic patterns are getting increasingly attractive, because huge quantities of speech data are becoming available but manual annotations remain hard to acquire. In this paper, we propose an approach for unsupervised discovery of linguistic structure for the target spoken language given raw speech data. This linguistic structure includes two-level (subword-like and word-like) acoustic patterns, the lexicon of word-like patterns in terms of subword-like patterns and the N-gram language model based on word-like patterns. All patterns, models, and parameters can be automatically learned from the unlabelled speech corpus. This is achieved by an initialization step followed by three cascaded stages for acoustic, linguistic, and lexical iterative optimization. The lexicon of word-like patterns defines allowed consecutive sequence of HMMs for subword-like patterns. In each iteration, model training and decoding produces updated labels from which the lexicon and HMMs can be further updated. In this way, model parameters and decoded labels are respectively optimized in each iteration, and the knowledge about the linguistic structure is learned gradually layer after layer. The proposed approach was tested in preliminary experiments on a corpus of Mandarin broadcast news, including a task of spoken term detection with performance compared to a parallel test using models trained in a supervised way. Results show that the proposed system not only yields reasonable performance on its own, but is also complimentary to existing large vocabulary ASR systems.Comment: Accepted by ICASSP 201

    Probabilistic Lexical Modeling and Unsupervised Training for Zero-Resourced ASR

    Get PDF
    Standard automatic speech recognition (ASR) systems rely on transcribed speech, language models, and pronunciation dictionaries to achieve state-of-the-art performance. The unavailability of these resources constrains the ASR technology to be available for many languages. In this paper, we propose a novel zero-resourced ASR approach to train acoustic models that only uses list of probable words from the language of interest. The proposed approach is based on Kullback-Leibler divergence based hidden Markov model (KL-HMM), grapheme subword units, knowledge of grapheme-to-phoneme mapping, and graphemic constraints derived from the word list. The approach also exploits existing acoustic and lexical resources available in other resource rich languages. Furthermore, we propose unsupervised adaptation of KL-HMM acoustic model parameters if untranscribed speech data in the target language is available. We demonstrate the potential of the proposed approach through a simulated study on Greek language

    Unsupervised Discovery of Structured Acoustic Tokens with Applications to Spoken Term Detection

    Full text link
    In this paper, we compare two paradigms for unsupervised discovery of structured acoustic tokens directly from speech corpora without any human annotation. The Multigranular Paradigm seeks to capture all available information in the corpora with multiple sets of tokens for different model granularities. The Hierarchical Paradigm attempts to jointly learn several levels of signal representations in a hierarchical structure. The two paradigms are unified within a theoretical framework in this paper. Query-by-Example Spoken Term Detection (QbE-STD) experiments on the QUESST dataset of MediaEval 2015 verifies the competitiveness of the acoustic tokens. The Enhanced Relevance Score (ERS) proposed in this work improves both paradigms for the task of QbE-STD. We also list results on the ABX evaluation task of the Zero Resource Challenge 2015 for comparison of the Paradigms

    Duration modeling with expanded HMM applied to speech recognition

    Get PDF
    The occupancy of the HMM states is modeled by means of a Markov chain. A linear estimator is introduced to compute the probabilities of the Markov chain. The distribution function (DF) represents accurately the observed data. Representing the DF as a Markov chain allows the use of standard HMM recognizers. The increase of complexity is negligible in training and strongly limited during recognition. Experiments performed on acoustic-phonetic decoding shows how the phone recognition rate increases from 60.6 to 61.1. Furthermore, on a task of database inquires, where phones are used as subword units, the correct word rate increases from 88.2 to 88.4.Peer ReviewedPostprint (published version

    Multilingual Training and Cross-lingual Adaptation on CTC-based Acoustic Model

    Full text link
    Multilingual models for Automatic Speech Recognition (ASR) are attractive as they have been shown to benefit from more training data, and better lend themselves to adaptation to under-resourced languages. However, initialisation from monolingual context-dependent models leads to an explosion of context-dependent states. Connectionist Temporal Classification (CTC) is a potential solution to this as it performs well with monophone labels. We investigate multilingual CTC in the context of adaptation and regularisation techniques that have been shown to be beneficial in more conventional contexts. The multilingual model is trained to model a universal International Phonetic Alphabet (IPA)-based phone set using the CTC loss function. Learning Hidden Unit Contribution (LHUC) is investigated to perform language adaptive training. In addition, dropout during cross-lingual adaptation is also studied and tested in order to mitigate the overfitting problem. Experiments show that the performance of the universal phoneme-based CTC system can be improved by applying LHUC and it is extensible to new phonemes during cross-lingual adaptation. Updating all the parameters shows consistent improvement on limited data. Applying dropout during adaptation can further improve the system and achieve competitive performance with Deep Neural Network / Hidden Markov Model (DNN/HMM) systems on limited data

    RWTH ASR Systems for LibriSpeech: Hybrid vs Attention -- w/o Data Augmentation

    Full text link
    We present state-of-the-art automatic speech recognition (ASR) systems employing a standard hybrid DNN/HMM architecture compared to an attention-based encoder-decoder design for the LibriSpeech task. Detailed descriptions of the system development, including model design, pretraining schemes, training schedules, and optimization approaches are provided for both system architectures. Both hybrid DNN/HMM and attention-based systems employ bi-directional LSTMs for acoustic modeling/encoding. For language modeling, we employ both LSTM and Transformer based architectures. All our systems are built using RWTHs open-source toolkits RASR and RETURNN. To the best knowledge of the authors, the results obtained when training on the full LibriSpeech training set, are the best published currently, both for the hybrid DNN/HMM and the attention-based systems. Our single hybrid system even outperforms previous results obtained from combining eight single systems. Our comparison shows that on the LibriSpeech 960h task, the hybrid DNN/HMM system outperforms the attention-based system by 15% relative on the clean and 40% relative on the other test sets in terms of word error rate. Moreover, experiments on a reduced 100h-subset of the LibriSpeech training corpus even show a more pronounced margin between the hybrid DNN/HMM and attention-based architectures.Comment: Proceedings of INTERSPEECH 201
    corecore