13,317 research outputs found

    Fuzzy uncertainty modelling for project planning; application to helicopter maintenance

    Get PDF
    Maintenance is an activity of growing interest specially for critical systems. Particularly, aircraft maintenance costs are becoming an important issue in the aeronautical industry. Managing an aircraft maintenance center is a complex activity. One of the difficulties comes from the numerous uncertainties that affect the activity and disturb the plans at short and medium term. Based on a helicopter maintenance planning and scheduling problem, we study in this paper the integration of uncertainties into tactical and operational multiresource, multi-project planning (respectively Rough Cut Capacity Planning and Resource Constraint Project Scheduling Problem). Our main contributions are in modelling the periodic workload on tactical level considering uncertainties in macro-tasks work contents, and modelling the continuous workload on operational level considering uncertainties in tasks durations. We model uncertainties by a fuzzy/possibilistic approach instead of a stochastic approach since very limited data are available. We refer to the problems as the Fuzzy RoughCut Capacity Problem (FRCCP) and the Fuzzy Resource Constraint Project Scheduling Problem (RCPSP).We apply our models to helicopter maintenance activity within the frame of the Helimaintenance project, an industrial project approved by the French Aerospace Valley cluster which aims at building a center for civil helicopter maintenance

    A Flexible Simulation Support for Production Planning and Control in Small and Medium Enterprises

    Get PDF
    For efficient, effective and economical production operation management in a manufacturing unit of an organization, it is essential to integrate the production planning and control system into an enterprise resource planning. Today\u27s planning systems suffer from a low range in planning data which results in unrealistic delivery times. One of the root causes is that production is influenced by uncertainties such as machine breakdowns, quality issues and the scheduling principle. Hence, it is necessary to model and simulate production planning and controls (PPC) with information dynamics in order to analyze the risks that are caused by multiple uncertainties. In this context, a new approach to simulate PPC systems is exposed in this paper, which aims at visualizing the production process and comparing key performance indicators (KPIs) as well as optimizing PPC parameters under different uncertainties in order to deal with potential risk consuming time and effort. Firstly, a production system simulation is created to quickly obtain different KPIs (e.g. on time delivery rate, quality, cost, machine utilization, WIP) under different uncertainties, which can be flexibly set by users. Secondly, an optimization experiment is conducted to optimize the parameters of PPC with regard to the different KPIs. An industrial case study is used to demonstrate the applicability and the validity of the proposed approach

    A conceptual procedural framework for effective scheduling to enhance efficient use of construction resources on the jobsite

    Get PDF
    Selection of construction methods, scheduling, site layout and component procurement arrangement affect efficiency of operations on the jobsite. Efficiency has been previously measured by such parameters as; budget, on time completion and meeting specification standards. Little attention has been given to the interim processes which create these. Efficiency in man- and machine-hour management may translate to cost and time gains and enhanced quality. The study reported recognises that there are numerous aspects to the question of efficiency of operations. To focus the study and narrow the scope to a manageable size, the issues of efficiency that can be addressed in the scheduling process are those considered. Extensive and thorough literature search identified guidelines for effective construction scheduling. Empirical data were collected following these guidelines to develop a scheduling procedure aimed at making the process more effective and which may enhance efficient use of construction resources on the jobsite. The developed framework show that activity criticality based on time analysis alone is a necessary condition but not usually sufficient to declare an activity critical. Other tasks not on the critical path which have very high delay potential should be considered. Therefore though the study does not out rightly refute the idea of criticality based on time analysis alone, it adds to it that if criticality means those things that should be done so as to progress the works to a scheduled finish, criticality should be re-assessed to include several other tasks not hitherto identified on the critical path

    Achieving manufacturing excellence through the integration of enterprise systems and simulation

    Get PDF
    This paper discusses the significance of the enterprise systems and simulation integration in improving shop floor’s short-term production planning capability. The ultimate objectives are to identify the integration protocols, optimisation parameters and critical design artefacts, thereby identifying key ‘ingredients’ that help in setting out a future research agenda in pursuit of optimum decision-making at the shop floor level. While the integration of enterprise systems and simulation gains a widespread agreement within the existing work, the optimality, scalability and flexibility of the schedules remained unanswered. Furthermore, there seems to be no commonality or pattern as to how many core modules are required to enable such a flexible and scalable integration. Nevertheless, the objective of such integration remains clear, i.e. to achieve an optimum total production time, lead time, cycle time, production release rates and cost. The issues presently faced by existing enterprise systems (ES), if properly addressed, can contribute to the achievement of manufacturing excellence and can help identify the building blocks for the software architectural platform enabling the integration

    Optical Identification of Cepheids in 19 Host Galaxies of Type Ia Supernovae and NGC 4258 with the Hubble Space Telescope

    Get PDF
    We present results of an optical search for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258, conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy). The targets include 9 newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, that yielded a total of 2200 variables with well-defined selection criteria -- the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H0 with a total uncertainty of 2.4%.Comment: ApJ, in press. v2 adds missing co-author to arXiv metadata and text in acknowledgment

    Enabling flexibility through strategic management of complex engineering systems

    Get PDF
    ”Flexibility is a highly desired attribute of many systems operating in changing or uncertain conditions. It is a common theme in complex systems to identify where flexibility is generated within a system and how to model the processes needed to maintain and sustain flexibility. The key research question that is addressed is: how do we create a new definition of workforce flexibility within a human-technology-artificial intelligence environment? Workforce flexibility is the management of organizational labor capacities and capabilities in operational environments using a broad and diffuse set of tools and approaches to mitigate system imbalances caused by uncertainties or changes. We establish a baseline reference for managers to use in choosing flexibility methods for specific applications and we determine the scope and effectiveness of these traditional flexibility methods. The unique contributions of this research are: a) a new definition of workforce flexibility for a human-technology work environment versus traditional definitions; b) using a system of systems (SoS) approach to create and sustain that flexibility; and c) applying a coordinating strategy for optimal workforce flexibility within the human- technology framework. This dissertation research fills the gap of how we can model flexibility using SoS engineering to show where flexibility emerges and what strategies a manager can use to manage flexibility within this technology construct”--Abstract, page iii
    corecore