6,754 research outputs found

    A foundation for machine learning in design

    Get PDF
    This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in design (MLinD) is defined so as to provide answers to basic questions on learning in design, such as, "What types of knowledge can be learnt?", "How does learning occur?", and "When does learning occur?". Five main elements of MLinD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning, and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in order to fully formalize the foundation of MLinD

    Common Sense or World Knowledge? Investigating Adapter-Based Knowledge Injection into Pretrained Transformers

    Full text link
    Following the major success of neural language models (LMs) such as BERT or GPT-2 on a variety of language understanding tasks, recent work focused on injecting (structured) knowledge from external resources into these models. While on the one hand, joint pretraining (i.e., training from scratch, adding objectives based on external knowledge to the primary LM objective) may be prohibitively computationally expensive, post-hoc fine-tuning on external knowledge, on the other hand, may lead to the catastrophic forgetting of distributional knowledge. In this work, we investigate models for complementing the distributional knowledge of BERT with conceptual knowledge from ConceptNet and its corresponding Open Mind Common Sense (OMCS) corpus, respectively, using adapter training. While overall results on the GLUE benchmark paint an inconclusive picture, a deeper analysis reveals that our adapter-based models substantially outperform BERT (up to 15-20 performance points) on inference tasks that require the type of conceptual knowledge explicitly present in ConceptNet and OMCS

    Modelling collective learning in design

    Get PDF
    In this paper, a model of collective learning in design is developed in the context of team design. It explains that a team design activity uses input knowledge, environmental information, and design goals to produce output knowledge. A collective learning activity uses input knowledge from different agents and produces learned knowledge with the process of knowledge acquisition and transformation between different agents, which may be triggered by learning goals and rationale triggers. Different forms of collective learning were observed with respect to agent interactions, goal(s) of learning, and involvement of an agent. Three types of links between team design and collective learning were identified, namely teleological, rationale, and epistemic. Hypotheses of collective learning are made based upon existing theories and models in design and learning, which were tested using a protocol analysis approach. The model of collective learning in design is derived from the test results. The proposed model can be used as a basis to develop agent-based learning systems in design. In the future, collective learning between design teams, the links between collective learning and creativity, and computational support for collective learning can be investigated
    • …
    corecore