53,000 research outputs found

    Evaluation of Potential Translocation Sites for an Imperiled Cyprinid, the Hornyhead Chub

    Get PDF
    Translocation of isolated species into suitable habitats may help to secure vulnerable, geographically limited species. Due to the decline of Wyoming Hornyhead Chub Nocomis biguttatus, conservation actions, such as the translocation of populations within the plausible historical range, are being considered to improve population redundancy and resiliency to disturbance events. Translocation of Wyoming Hornyhead Chub must be rigorously evaluated because a hatchery stock does not exist, so all fish used in translocations will come from the wild population. We present an approach to identify the best available translocation sites prior to translocation efforts taking place. We evaluated fish community composition and habitat conditions at 54 potential translocation sites for Hornyhead Chub within 12 streams of the North Platte River basin of Wyoming. We used two analyses to identify translocation sites that were most similar to currently occupied Hornyhead Chub sites on the Laramie River: hurdle models to predict hypothetical abundance of Hornyhead Chub at translocation sites and nonmetric multidimensional scaling with fish community and habitat conditions. Presence and abundance of Hornyhead Chub were positively related to a lack of nonnative predators and to habitat features characteristic of backwater and velocity refuge habitats (e.g., minimum water velocity and width-to-depth ratio). We used a rank scoring system to weight the outcomes of each analysis, and the highest-ranking translocation sites occurred at a historically occupied locality, the Sweetwater River. Our approach may be appropriate for other at-risk species with isolated distributions and little historical data

    A Primer for Monitoring Water Funds

    Get PDF
    This document is intended to assist people working on Water Funds to understand their information needs and become familiar with the strengths and weaknesses of various monitoring approaches. This primer is not intended to make people monitoring experts, but rather to help them become familiar with and conversant in the major issues so they can communicate effectively with experts to design a scientifically defensible monitoring program.The document highlights the critical information needs common to Water Fund projects and summarizes issues and steps to address in developing a Water Fund monitoring program. It explains key concepts and challenges; suggests monitoring parameters and an array of sampling designs to consider as a starting-point; and provides suggestions for further reading, links to helpful resources,and an annotated bibliography of studies on the impacts that result from activities commonly implemented in Water Fund projects

    Panel discussion: U.S. EPA using modeling and ecosystem services to enhance coastal decision making

    Get PDF
    This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more comprehensive approach to policy and decision-making affecting coastal ecosystems as well as provide an account of valued services that have heretofore been largely unrecognized. Interim research products, including updated and integrated spatial data, models and model frameworks, and interactive decision support systems will be demonstrated to engage potential users and to elicit feedback. It is anticipated that the near-term impact of the projects will be to increase the awareness by coastal communities and coastal managers of the implications of their actions and to foster partnerships for ecosystem services research and applications. (PDF contains 4 pages

    Estimating sample representativeness in a survey of stream caddisfly fauna

    Get PDF
    Obtaining an adequate and representative sample is a continuing challenge of community ecology. The present study focuses on what sample area represents adequately the structural composition of the caddisfly fauna of a riffle, at a given sampling occasion. Sixty-two Surber samples were collected from a riffle in a second-order reach of the Bernecei Stream (Börzsöny Mountains, Hungary). This data set was used to estimate sample representativeness at different sample sizes (from 1 to 31 Surber samples, 0.09 m2 - 2.79 m2) generated a re-sampling procedure. Sample representativeness was measured with mean Jaccard Coefficient and Bray-Curtis Index between samples for species presence-absence data and abundance data, respectively. We found that a sample size of 2.25 m2 represented well (mean similarity 0.998) the species composition of the caddisfly fauna if rare species were excluded from the analysis. In contrast, sample representativeness of species composition proved to be relatively low (0.719) if rare species were included in the analysis. Curves of sample representativeness based on both raw-, or transformed abundance data were less sensitive to the presence of rare species and showed lower representativeness than sample representativeness based on presence/absence data

    Predicing Ecological Effects of Watershed-Wide Rain Garden Implementation Using a Low-Cost Methodology

    Get PDF
    Stormwater control measures (SCMs) have been employed to mitigate peak flows and pollutants ssociated with watershed urbanization. Downstream ecological effects caused by the implementation of SCMs are largely unknown, especially at the watershed scale. Knowledge of these effects could help with setting goals for and targeting locations of local restoration efforts. Unfortunately, studies such as these typically require a high level of time and effort for the investigating party, of which resources are often limited. This study proposes a low-cost investigation method for the prediction of ecological effects on the watershed scale with the implementation of rain garden systems by using publicly available data and software. For demonstration purposes, a typical urban watershed was modeled using Storm Water Management Model (SWMM) 5.0. Forty-five models were developed in which the percent impervious area was varied 3 to 80%, and the fraction of rain gardens implemented with respect to the number of structures was varied from to 100%. The river chub fish (Nocomis micropogon) and its congeners (Nocomis spp.) were chosen as ecological indicators, as they are considered to be keystone species through interspecific nesting association. Depth and velocity criteria for successful nest building locations of the river chub were determined; these criteria can then be applied to many other watersheds. In this study, both base flow conditions and a typical summer storm event (1.3 cm, 6 h duration) were evaluated. During the simulated storm, nest-building locations were not affected in the 3 and 5% impervious cover models. Nest destruction was found to occur in approximately 54% of the original nest building sites for the 9% and 10% impervious areas. Nearly all of the nest-building locations were uninhabitable for impervious areas 20% and greater. Rain garden implementation significantly improved river chub habitat in the simulation, with greatest marginal benefit at lower levels of implementation
    • …
    corecore