213 research outputs found

    Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces

    Full text link
    © 2018 IEEE. Domain adaptation aims to leverage knowledge acquired from a related domain (called a source domain) to improve the efficiency of completing a prediction task (classification or regression) in the current domain (called the target domain), which has a different probability distribution from the source domain. Although domain adaptation has been widely studied, most existing research has focused on homogeneous domain adaptation, where both domains have identical feature spaces. Recently, a new challenge proposed in this area is heterogeneous domain adaptation where both the probability distributions and the feature spaces are different. Moreover, in both homogeneous and heterogeneous domain adaptation, the greatest efforts and major achievements have been made with classification tasks, while successful solutions for tackling regression problems are limited. This paper proposes two innovative fuzzy rule-based methods to deal with regression problems. The first method, called fuzzy homogeneous domain adaptation, handles homogeneous spaces while the second method, called fuzzy heterogeneous domain adaptation, handles heterogeneous spaces. Fuzzy rules are first generated from the source domain through a learning process; these rules, also known as knowledge, are then transferred to the target domain by establishing a latent feature space to minimize the gap between the feature spaces of the two domains. Through experiments on synthetic datasets, we demonstrate the effectiveness of both methods and discuss the impact of some of the significant parameters that affect performance. Experiments on real-world datasets also show that the proposed methods improve the performance of the target model over an existing source model or a model built using a small amount of target data

    Multi-Label Takagi-Sugeno-Kang Fuzzy System

    Full text link
    Multi-label classification can effectively identify the relevant labels of an instance from a given set of labels. However,the modeling of the relationship between the features and the labels is critical to the classification performance. To this end, we propose a new multi-label classification method, called Multi-Label Takagi-Sugeno-Kang Fuzzy System (ML-TSK FS), to improve the classification performance. The structure of ML-TSK FS is designed using fuzzy rules to model the relationship between features and labels. The fuzzy system is trained by integrating fuzzy inference based multi-label correlation learning with multi-label regression loss. The proposed ML-TSK FS is evaluated experimentally on 12 benchmark multi-label datasets. 1 The results show that the performance of ML-TSK FS is competitive with existing methods in terms of various evaluation metrics, indicating that it is able to model the feature-label relationship effectively using fuzzy inference rules and enhances the classification performance.Comment: This work has been accepted by IEEE Transactions on Fuzzy System

    Unsupervised Heterogeneous Domain Adaptation via Shared Fuzzy Equivalence Relations

    Full text link
    © 1993-2012 IEEE. Unsupervised domain adaptation (UDA) aims to recognize newly emerged patterns in target domains, which may be unlabeled, by leveraging knowledge from patterns learnt from source domains. However, existing UDA models and algorithms still suffer from heterogeneous domains, known as the heterogeneous unsupervised domain adaptation (HeUDA) issue. To address this issue, this paper presents a novel HeUDA model via n-dimensional fuzzy geometry and fuzzy equivalence relations, called F-HeUDA. The n-dimensional fuzzy geometry is used to propose a metric to measure the similarity between features on one domain. Then, based on this metric, shared fuzzy equivalence relations (SFER) are proposed. The SFER can allow two domains to use the same α to get the same number of clustering categories. Through these clustering categories, knowledge from the heterogeneous source domain can be transferred to the unlabeled target domain. Different to existing HeUDA models, the proposed F-HeUDA model does not need that two domains must have the same number of instances. As a result, the proposed model has a better ability to handle the issue of small datasets. Experiments distributed across four real datasets were conducted to validate the proposed model. This testing regime demonstrates that the proposed model outperforms the state-of-The-Art models, especially when the target domain has very few instances

    Fuzzy Transfer Learning Using an Infinite Gaussian Mixture Model and Active Learning

    Full text link
    © 2018 IEEE. Transfer learning is gaining considerable attention due to its ability to leverage previously acquired knowledge to assist in completing a prediction task in a related domain. Fuzzy transfer learning, which is based on fuzzy system (especially fuzzy rule-based models), has been developed because of its capability to deal with the uncertainty in transfer learning. However, two issues with fuzzy transfer learning have not yet been resolved: choosing an appropriate source domain and efficiently selecting labeled data for the target domain. This paper proposes an innovative method based on fuzzy rules that combines an infinite Gaussian mixture model (IGMM) with active learning to enhance the performance and generalizability of the constructed model. An IGMM is used to identify the data structures in the source and target domains providing a promising solution to the domain selection dilemma. Further, we exploit the interactive query strategy in active learning to correct imbalances in the knowledge to improve the generalizability of fuzzy learning models. Through experiments on synthetic datasets, we demonstrate the rationality of employing an IGMM and the effectiveness of applying an active learning technique. Additional experiments on real-world datasets further support the capabilities of the proposed method in practical situations

    Granular Fuzzy Regression Domain Adaptation in Takagi-Sugeno Fuzzy Models

    Full text link
    © 1993-2012 IEEE. In classical data-driven machine learning methods, massive amounts of labeled data are required to build a high-performance prediction model. However, the amount of labeled data in many real-world applications is insufficient, so establishing a prediction model is impossible. Transfer learning has recently emerged as a solution to this problem. It exploits the knowledge accumulated in auxiliary domains to help construct prediction models in a target domain with inadequate training data. Most existing transfer learning methods solve classification tasks; only a few are devoted to regression problems. In addition, the current methods ignore the inherent phenomenon of information granularity in transfer learning. In this study, granular computing techniques are applied to transfer learning. Three granular fuzzy regression domain adaptation methods to determine the estimated values for a regression target are proposed to address three challenging cases in domain adaptation. The proposed granular fuzzy regression domain adaptation methods change the input and/or output space of the source domain's model using space transformation, so that the fuzzy rules are more compatible with the target data. Experiments on synthetic and real-world datasets validate the effectiveness of the proposed methods

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data
    • …
    corecore