12,180 research outputs found

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Knowledge web: realising the semantic web... all the way to knowledge-enhanced multimedia documents

    Get PDF
    The semantic web and semantic web services are major efforts in order to spread and to integrate knowledge technology to the whole web. The Knowledge Web network of excellence aims at supporting their developments at the best and largest European level and supporting industry in adopting them. It especially investigates the solution of scalability, heterogeneity and dynamics obstacles to the full development of the semantic web. We explain how Knowledge Web results should benefit knowledge-enhanced multimedia applications

    GSO: Designing a Well-Founded Service Ontology to Support Dynamic Service Discovery and Composition

    Get PDF
    A pragmatic and straightforward approach to semantic service discovery is to match inputs and outputs of user requests with the input and output requirements of registered service descriptions. This approach can be extended by using pre-conditions, effects and semantic annotations (meta-data) in an attempt to increase discovery accuracy. While on one hand these additions help improve discovery accuracy, on the other hand complexity is added as service users need to add more information elements to their service requests. In this paper we present an approach that aims at facilitating the representation of service requests by service users, without loss of accuracy. We introduce a Goal-Based Service Framework (GSF) that uses the concept of goal as an abstraction to represent service requests. This paper presents the core concepts and relations of the Goal-Based Service Ontology (GSO), which is a fundamental component of the GSF, and discusses how the framework supports semantic service discovery and composition. GSO provides a set of primitives and relations between goals, tasks and services. These primitives allow a user to represent its goals, and a supporting platform to discover or compose services that fulfil them

    The Information-Flow Approach to Ontology-Based Semantic Integration

    No full text
    In this article we argue for the lack of formal foundations for ontology-based semantic alignment. We analyse and formalise the basic notions of semantic matching and alignment and we situate them in the context of ontology-based alignment in open-ended and distributed environments, like the Web. We then use the mathematical notion of information flow in a distributed system to ground three hypotheses that enable semantic alignment. We draw our exemplar applications of this work from a variety of interoperability scenarios including ontology mapping, theory of semantic interoperability, progressive ontology alignment, and situated semantic alignment
    corecore