5,868 research outputs found

    Optimization as a design strategy. Considerations based on building simulation-assisted experiments about problem decomposition

    Full text link
    In this article the most fundamental decomposition-based optimization method - block coordinate search, based on the sequential decomposition of problems in subproblems - and building performance simulation programs are used to reason about a building design process at micro-urban scale and strategies are defined to make the search more efficient. Cyclic overlapping block coordinate search is here considered in its double nature of optimization method and surrogate model (and metaphore) of a sequential design process. Heuristic indicators apt to support the design of search structures suited to that method are developed from building-simulation-assisted computational experiments, aimed to choose the form and position of a small building in a plot. Those indicators link the sharing of structure between subspaces ("commonality") to recursive recombination, measured as freshness of the search wake and novelty of the search moves. The aim of these indicators is to measure the relative effectiveness of decomposition-based design moves and create efficient block searches. Implications of a possible use of these indicators in genetic algorithms are also highlighted.Comment: 48 pages. 12 figures, 3 table

    Game Theory-Based Minimization of the Ostracism Risk in Construction Companies

    Get PDF
    Strategic and managerial decision-making in an organization can have a crucial effect for the whole entity; however, it rarely involves the organization’s employees evenly at the different organizational levels. The result is—what is addressed in this paper as—the ostracism risk, namely the risk accruing from the lack of satisfaction of underprivileged employees’ groups during the decision-making process. The ostracism risk could jeopardize the organization’s integrity and therefore requires effective treatment. This paper aims at verifying a conceptual approach, which is proposed as a methodology for assessing the probability of organizational cooperation when deciding under risk, thus minimizing ostracism risk. The proposed approach is based on organizational and human resources management (HRM) theories and is contextualized for construction through the understanding of systems theory. The proposed methodology presents a potential modelling via game theory of a medium-sized construction company that is organized according to Mintzberg’s organizational model. The utilization of the bounded Pareto distribution is presented as an approach of the model’s probabilistic processing, and the potential for estimating the probabilities to adopt a favorable cooperational decision is verified. The paper concludes with the reference to the next steps required for the methodology’s validation and further improvement

    The 45th Australasian Universities Building Education Association Conference: Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment, Book of Abstracts, 23 - 25 November 2022

    Get PDF
    This is the book of abstract of the 45th Australasian Universities Building Education Association (AUBEA) conference, which will be hosted by Western Sydney University in November 2022. The conference is organised by the School of Engineering, Design, and Built Environment in collaboration with the Centre for Smart Modern Construction, Western Sydney University. This year’s conference theme is “Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment”, and expects to publish over a hundred double-blind peer review papers under the proceedings

    The systemic contract

    Get PDF

    Fitting Analysis using Differential Evolution Optimization (FADO): Spectral population synthesis through genetic optimization under self-consistency boundary conditions

    Full text link
    The goal of population spectral synthesis (PSS) is to decipher from the spectrum of a galaxy the mass, age and metallicity of its constituent stellar populations. This technique has been established as a fundamental tool in extragalactic research. It has been extensively applied to large spectroscopic data sets, notably the SDSS, leading to important insights into the galaxy assembly history. However, despite significant improvements over the past decade, all current PSS codes suffer from two major deficiencies that inhibit us from gaining sharp insights into the star-formation history (SFH) of galaxies and potentially introduce substantial biases in studies of their physical properties (e.g., stellar mass, mass-weighted stellar age and specific star formation rate). These are i) the neglect of nebular emission in spectral fits, consequently, ii) the lack of a mechanism that ensures consistency between the best-fitting SFH and the observed nebular emission characteristics of a star-forming (SF) galaxy. In this article, we present FADO (Fitting Analysis using Differential evolution Optimization): a conceptually novel, publicly available PSS tool with the distinctive capability of permitting identification of the SFH that reproduces the observed nebular characteristics of a SF galaxy. This so-far unique self-consistency concept allows us to significantly alleviate degeneracies in current spectral synthesis. The innovative character of FADO is further augmented by its mathematical foundation: FADO is the first PSS code employing genetic differential evolution optimization. This, in conjunction with other unique elements in its mathematical concept (e.g., optimization of the spectral library using artificial intelligence, convergence test, quasi-parallelization) results in key improvements with respect to computational efficiency and uniqueness of the best-fitting SFHs.Comment: 25 pages, 12 figures, A&A accepte

    Institutional paraconsciousness and its pathologies

    Get PDF
    This analysis extends a recent mathematical treatment of the Baars consciousness model to analogous, but far more complicated, phenomena of institutional cognition. Individual consciousness is limited to a single, tunable, giant component of interacting cognitive modules, instantiating a Global Workspace. Human institutions, by contrast, support several, sometimes many, such giant components simultaneously, although their behavior remains constrained to a topology generated by cultural context and by the path-dependence inherent to organizational history. Such highly parallel multitasking - institutional paraconsciousness - while clearly limiting inattentional blindness and the consequences of failures within individual workspaces, does not eliminate them, and introduces new characteristic dysfunctions involving the distortion of information sent between global workspaces. Consequently, organizations (or machines designed along these principles), while highly efficient at certain kinds of tasks, remain subject to canonical and idiosyncratic failure patterns similar to, but more complicated than, those afflicting individuals. Remediation is complicated by the manner in which pathogenic externalities can write images of themselves on both institutional function and therapeutic intervention, in the context of relentless market selection pressures. The approach is broadly consonant with recent work on collective efficacy, collective consciousness, and distributed cognition

    A Network Model of Financial Markets

    Get PDF
    This thesis introduces a network representation of equity markets.The model is based on the premise that assets share dependencies on abstract ‘factors’ resulting in exploitable patterns among asset price levels.The network model is a collection of long-run market trends estimated by a 3 layer machine learning framework.The network model’s comprehensive validity is established with 2 simulations in the fields of algorithmic trading, and systemic risk.The algorithmic trading validation applies expectations derived from the network model to estimating expected future returns. It further utilizes the network’s expectations to actively manage a theoretically market neutral portfolio.The validation demonstrates that the network model’s portfolio generates excess returns relative to 2 benchmarks. Over the time period of April, 2007 to January, 2014 the network model’s portfolio for assets drawn from the S&P/ASX 100 produced a Sharpe ratio of 0.674.This approximately doubles the nearest benchmark. The systemic risk validation utilized the network model to simulate shocks to select market sectors and evaluate the resulting financial contagion.The validation successfully differentiated sectors by systemic connectivity levels and suggested some interesting market features. Most notable was the identification of the ‘Financials’ sector as most systemically influential and ‘Basic Materials’ as the most systemically dependent. Additionally, there was evidence that ‘Financials’ may function as a hub of systemic risk which exacerbates losses from multiple market sectors

    Opportunities for the digital transformation of the banana sector supply chain based on software with artificial intelligence

    Get PDF
    Artificial intelligence offers great opportunities for the supply chain, being this a competitive advantage for today’s changing market. This article aims to identify the impacts and opportunities that artificial intelligence software can offer to facilitate the operation and improve the performance of the supply chain in the banana sector in Colombia. The work methodology consists of six steps in which a total of 72 investigations were obtained. The sources of information were four databases. As a main conclusion, the supply chain of the banana sector has everything necessary for intelligent software based solutions to be implemented in order to achieve adaptation, flexibility and sensitivity to the context and domain of execution
    • 

    corecore