18,833 research outputs found

    Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition

    Full text link
    Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.Air Force Office of Scientific Research (F40620-01-1-0423); National Geographic-Intelligence Agency (NMA 201-001-1-2016); National Science Foundation (SBE-0354378; BCS-0235298); Office of Naval Research (N00014-01-1-0624); National Geospatial-Intelligence Agency and the National Society of Siegfried Martens (NMA 501-03-1-2030, DGE-0221680); Department of Homeland Security graduate fellowshi

    Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map

    Get PDF
    This paper outlines the development of a multi-satellite precipitation estimation methodology that draws on techniques from machine learning and morphology to produce high-resolution, short-duration rainfall estimates in an automated fashion. First, cloud systems are identified from geostationary infrared imagery using morphology based watershed segmentation algorithm. Second, a novel pattern recognition technique, growing hierarchical self-organizing map (GHSOM), is used to classify clouds into a number of clusters with hierarchical architecture. Finally, each cloud cluster is associated with co-registered passive microwave rainfall observations through a cumulative histogram matching approach. The network was initially trained using remotely sensed geostationary infrared satellite imagery and hourly ground-radar data in lieu of a dense constellation of polar-orbiting spacecraft such as the proposed global precipitation measurement (GPM) mission. Ground-radar and gauge rainfall measurements were used to evaluate this technique for both warm (June 2004) and cold seasons (December 2004-February 2005) at various temporal (daily and monthly) and spatial (0.04 and 0.25) scales. Significant improvements of estimation accuracy are found classifying the clouds into hierarchical sub-layers rather than a single layer. Furthermore, 2-year (2003-2004) satellite rainfall estimates generated by the current algorithm were compared with gauge-corrected Stage IV radar rainfall at various time scales over continental United States. This study demonstrates the usefulness of the watershed segmentation and the GHSOM in satellite-based rainfall estimations

    Virtual environment trajectory analysis:a basis for navigational assistance and scene adaptivity

    Get PDF
    This paper describes the analysis and clustering of motion trajectories obtained while users navigate within a virtual environment (VE). It presents a neural network simulation that produces a set of five clusters which help to differentiate users on the basis of efficient and inefficient navigational strategies. The accuracy of classification carried out with a self-organising map algorithm was tested and improved to in excess of 85% by using learning vector quantisation. This paper considers how such user classifications could be utilised in the delivery of intelligent navigational support and the dynamic reconfiguration of scenes within such VEs. We explore how such intelligent assistance and system adaptivity could be delivered within a Multi-Agent Systems (MAS) context

    Curbing domestic violence: instantiating C-K theory with formal concept analysis and emergent self organizing maps.

    Get PDF
    In this paper we propose a human-centered process for knowledge discovery from unstructured text that makes use of Formal Concept Analysis and Emergent Self Organizing Maps. The knowledge discovery process is conceptualized and interpreted as successive iterations through the Concept-Knowledge (C-K) theory design square. To illustrate its effectiveness, we report on a real-life case study of using the process at the Amsterdam-Amstelland police in the Netherlands aimed at distilling concepts to identify domestic violence from the unstructured text in actual police reports. The case study allows us to show how the process was not only able to uncover the nature of a phenomenon such as domestic violence, but also enabled analysts to identify many types of anomalies in the practice of policing. We will illustrate how the insights obtained from this exercise resulted in major improvements in the management of domestic violence cases.Formal concept analysis; Emergent self organizing map; C-K theory; Text mining; Actionable knowledge discovery; Domestic violence;

    Data mining using rule extraction from Kohonen self-organising maps

    Get PDF
    The Kohonen self-organising feature map (SOM) has several important properties that can be used within the data mining/knowledge discovery and exploratory data analysis process. A key characteristic of the SOM is its topology preserving ability to map a multi-dimensional input into a two-dimensional form. This feature is used for classification and clustering of data. However, a great deal of effort is still required to interpret the cluster boundaries. In this paper we present a technique which can be used to extract propositional IF..THEN type rules from the SOM network’s internal parameters. Such extracted rules can provide a human understandable description of the discovered clusters
    • …
    corecore