405,325 research outputs found

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    DOMAIN-SPECIFIC DSS TOOLS FOR KNOWLEDGE-BASED MODEL BUILDING

    Get PDF
    The formulation of complex planning models, such as linear programming (LP) systems, is a difficult task that enjoys little support by current decision support systems tools. It is hypothesized that current artificial intelligence technology is insufficient to build generalized formulation tools that would be usable by OR-naive end users. As an alternative, this paper presents a domain-specific approach to knowledge-based model formulation which combines the use of "syntactic" knowledge about linear programming with âsemanticâ guidance by knowledge specific to some application domain. As a prototype of this approach, a model formulation tool for LP-based production management is under development at New York University.Information Systems Working Papers Serie

    Robot training using system identification

    Get PDF
    This paper focuses on developing a formal, theory-based design methodology to generate transparent robot control programs using mathematical functions. The research finds its theoretical roots in robot training and system identification techniques such as Armax (Auto-Regressive Moving Average models with eXogenous inputs) and Narmax (Non-linear Armax). These techniques produce linear and non-linear polynomial functions that model the relationship between a robot’s sensor perception and motor response. The main benefits of the proposed design methodology, compared to the traditional robot programming techniques are: (i) It is a fast and efficient way of generating robot control code, (ii) The generated robot control programs are transparent mathematical functions that can be used to form hypotheses and theoretical analyses of robot behaviour, and (iii) It requires very little explicit knowledge of robot programming where end-users/programmers who do not have any specialised robot programming skills can nevertheless generate task-achieving sensor-motor couplings. The nature of this research is concerned with obtaining sensor-motor couplings, be it through human demonstration via the robot, direct human demonstration, or other means. The viability of our methodology has been demonstrated by teaching various mobile robots different sensor-motor tasks such as wall following, corridor passing, door traversal and route learning

    Presumptions—The Uniform Rules in the Federal Courts

    Get PDF
    Emerging heavy duty vehicle control systems increasingly rely on advance knowledge of the road topography, described by the longitudinal road grade. Highway road grade profiles are restricted by road design specifications to be piecewise affine. This characteristic is used herein to derive a method for road grade estimation based on standard on-vehicle sensors and optimal piecewise linear estimation through dynamic programming. The proposed method is demonstrated with on-road experiments. It is able to represent the road grade profile for two studied 15 km road sections, by 20 linear segments for each, with a root mean square error between 0.42 % and 0.55 % grade.QC 20120215</p

    A Linear Programming Relaxation DEA Model for Selecting a Single Efficient Unit with Variable RTS Technology

    Get PDF
    The selection-based problem is a type of decision-making issue which involves opting for a single option among a set of available alternatives. In order to address the selection-based problem in data envelopment analysis (DEA), various integrated mixed binary linear programming (MBLP) models have been developed. Recently, an MBLP model has been proposed to select a unit in DEA with variable returns-to-scale technology. This paper suggests utilizing the linear programming relaxation model rather than the MBLP model. The MBLP model is proved here to be equivalent to its linear programming relaxation problem. To the best of the authors’ knowledge, this is the first linear programming model suggested for selecting a single efficient unit in DEA under the VRS (Variable Returns to Scale) assumption. Two theorems and a numerical example are provided to validate the proposed LP model from both theoretical and practical perspectives

    Pivotal estimation in high-dimensional regression via linear programming

    Full text link
    We propose a new method of estimation in high-dimensional linear regression model. It allows for very weak distributional assumptions including heteroscedasticity, and does not require the knowledge of the variance of random errors. The method is based on linear programming only, so that its numerical implementation is faster than for previously known techniques using conic programs, and it allows one to deal with higher dimensional models. We provide upper bounds for estimation and prediction errors of the proposed estimator showing that it achieves the same rate as in the more restrictive situation of fixed design and i.i.d. Gaussian errors with known variance. Following Gautier and Tsybakov (2011), we obtain the results under weaker sensitivity assumptions than the restricted eigenvalue or assimilated conditions
    • …
    corecore