30,215 research outputs found

    Constraint-Based Qualitative Simulation

    Full text link
    We consider qualitative simulation involving a finite set of qualitative relations in presence of complete knowledge about their interrelationship. We show how it can be naturally captured by means of constraints expressed in temporal logic and constraint satisfaction problems. The constraints relate at each stage the 'past' of a simulation with its 'future'. The benefit of this approach is that it readily leads to an implementation based on constraint technology that can be used to generate simulations and to answer queries about them.Comment: 10 pages, to appear at the conference TIME 200

    Thick 2D Relations for Document Understanding

    Get PDF
    We use a propositional language of qualitative rectangle relations to detect the reading order from document images. To this end, we define the notion of a document encoding rule and we analyze possible formalisms to express document encoding rules such as LATEX and SGML. Document encoding rules expressed in the propositional language of rectangles are used to build a reading order detector for document images. In order to achieve robustness and avoid brittleness when applying the system to real life document images, the notion of a thick boundary interpretation for a qualitative relation is introduced. The framework is tested on a collection of heterogeneous document images showing recall rates up to 89%

    Qualitative constraint satisfaction problems : algorithms, computational complexity, and extended framework

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Qualitative Spatial and Temporal Reasoning (QSTR) is a subfield of artificial intelligence that represents and reasons with spatial/temporal knowledge in a qualitative way. In the past three decades, researchers have proposed dozens of relational models (known as qualitative calculi), including, among others, Point Algebra (PA) and Interval Algebra (IA) for temporal knowledge, Cardinal Relation Algebra (CRA) and Cardinal Direction Calculus (CDC) for directional spatial knowledge, and the Region Connection Calculus RCC-5/RCC-8 for topological spatial knowledge. Relations are used in qualitative calculi for representing spatial/temporal information (e.g. Germany is to the east of France) and constraints (e.g. the to-be-established landfill should be disjoint from any lake). The reasoning tasks in QSTR are formalised via the qualitative constraint satisfaction problem (QCSP). As the central reasoning problem in QCSP, the consistency problem (which decides the consistency of a number of constraints in certain qualitative calculi) has been extensively investigated in the literature. For PA, IA, CRA, and RCC-5/RCC-8, the consistency problem can be solved by composition-based reasoning. For CDC, however, composition-based reasoning is incomplete, and the consistency problem in CDC remains challenging. Previous works in QCSP assume that qualitative constraints only concern completely unknown entities. Therefore, constraints about landmarks (i.e., fixed entities) cannot be properly expressed. This has significantly restricted the usefulness of QSTR in real-world applications. The main contributions of this thesis are as follows. (i) The composition-based method is one of the most important reasoning methods in QSTR. This thesis designs a semi-automatic algorithm for generating composition tables for general qualitative calculi. This provides a partial answer to the challenge proposed by Cohn in 1995. (ii) Schockaert et al. (2008) extend the RCC models interpreted in Euclidean topologies to the fuzzy context and show that composition-based reasoning is sufficient to solve fuzzy QCSP, where 31 composition rules are used. This thesis first shows that only six of the 31 composition rules are necessary, and then introduces a method which consistently fuzzifies any classical RCC models. This thesis also proposes a polynomial algorithm for realizing solutions of consistent fuzzy RCC constraints. (iii) Composition-based reasoning is incomplete for solving QCSP over the CDC. This thesis provides a cubic algorithm which for the first time solves the consistency problem of complete basic CDC networks, and further shows that the problem becomes NP-complete if the networks are allowed to be incomplete. This draws a sharp boundary between the tractable and intractable subclasses of the CDC. (iv) This thesis proposes a more general and more expressive QCSP framework, in which a variable is allowed to be a landmark (i.e., a fixed object), or to be chosen among several landmarks. The computational complexity of the consistency problems in the new framework is then investigated, covering all qualitative calculi mentioned above. For basic networks, the consistency problem remains tractable for Point Algebra, but becomes NP-complete for all the remaining qualitative calculi. A special case in which a variable is either a landmark or is totally unknown has also been studied. (v) A qualitative network is minimal if it cannot be refined without changing its solution set. Unlike the assumptions in the literature, this thesis shows that computing a solution of minimal networks is NP-complete for (partially ordered) PA, CRA, IA, and RCC-5/RCC-8. As a by-product, it has also been proved that determining the minimality of networks in these qualitative calculi is NP-complete

    Algebraic foundations for qualitative calculi and networks

    Full text link
    A qualitative representation ϕ\phi is like an ordinary representation of a relation algebra, but instead of requiring (a;b)ϕ=aϕbϕ(a; b)^\phi = a^\phi | b^\phi, as we do for ordinary representations, we only require that cϕaϕbϕ    ca;bc^\phi\supseteq a^\phi | b^\phi \iff c\geq a ; b, for each cc in the algebra. A constraint network is qualitatively satisfiable if its nodes can be mapped to elements of a qualitative representation, preserving the constraints. If a constraint network is satisfiable then it is clearly qualitatively satisfiable, but the converse can fail. However, for a wide range of relation algebras including the point algebra, the Allen Interval Algebra, RCC8 and many others, a network is satisfiable if and only if it is qualitatively satisfiable. Unlike ordinary composition, the weak composition arising from qualitative representations need not be associative, so we can generalise by considering network satisfaction problems over non-associative algebras. We prove that computationally, qualitative representations have many advantages over ordinary representations: whereas many finite relation algebras have only infinite representations, every finite qualitatively representable algebra has a finite qualitative representation; the representability problem for (the atom structures of) finite non-associative algebras is NP-complete; the network satisfaction problem over a finite qualitatively representable algebra is always in NP; the validity of equations over qualitative representations is co-NP-complete. On the other hand we prove that there is no finite axiomatisation of the class of qualitatively representable algebras.Comment: 22 page
    corecore