614 research outputs found

    Analyzing Sequential Pattern Mining to Detect Calcium Peaks in Cardiomyocytes Data

    Get PDF
    This study examines sequential pattern mining and its applications in various fields. The previous research was conducted by examining signal data, from which calcium peaks were automatically detected and classified. Before the implementation of sequential pattern mining approach to find out patterns from a dataset of 102 signals, association rule mining, frequent itemsets, Apriori algorithm, and rule generation were explored. Sequential pattern mining, including time constraints, are defined, before examining a knowledge-assisted sequential pattern analysis, from which certain points are considered, such as what is a sequential itemset. The implementation phase consists of calculating what constitutes a candidate itemset. The findings are modified to work with a sequential rule mining algorithm, and the results are discussed afterwards

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Machine Learning Meets Advanced Robotic Manipulation

    Full text link
    Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works

    Deep Learning for Multiclass Classification, Predictive Modeling and Segmentation of Disease Prone Regions in Alzheimer’s Disease

    Get PDF
    One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s Disease (AD) is identifying the subtle changes that define the early onset of the disease. This dissertation investigates three of the main challenges confronted when such subtle changes are to be identified in the most meaningful way. These are (1) the missing data challenge, (2) longitudinal modeling of disease progression, and (3) the segmentation and volumetric calculation of disease-prone brain areas in medical images. The scarcity of sufficient data compounded by the missing data challenge in many longitudinal samples exacerbates the problem as we seek statistical meaningfulness in multiclass classification and regression analysis. Although there are many participants in the AD Neuroimaging Initiative (ADNI) study, many of the observations have a lot of missing features which often lead to the exclusion of potentially valuable data points that could add significant meaning in many ongoing experiments. Motivated by the necessity of examining all participants, even those with missing tests or imaging modalities, multiple techniques of handling missing data in this domain have been explored. Specific attention was drawn to the Gradient Boosting (GB) algorithm which has an inherent capability of addressing missing values. Prior to applying state-of-the-art classifiers such as Support Vector Machine (SVM) and Random Forest (RF), the impact of imputing data in common datasets with numerical techniques has been also investigated and compared with the GB algorithm. Furthermore, to discriminate AD subjects from healthy control individuals, and Mild Cognitive Impairment (MCI), longitudinal multimodal heterogeneous data was modeled using recurring neural networks (RNNs). In the segmentation and volumetric calculation challenge, this dissertation places its focus on one of the most relevant disease-prone areas in many neurological and neurodegenerative diseases, the hippocampus region. Changes in hippocampus shape and volume are considered significant biomarkers for AD diagnosis and prognosis. Thus, a two-stage model based on integrating the Vision Transformer and Convolutional Neural Network (CNN) is developed to automatically locate, segment, and estimate the hippocampus volume from the brain 3D MRI. The proposed architecture was trained and tested on a dataset containing 195 brain MRIs from the 2019 Medical Segmentation Decathlon Challenge against the manually segmented regions provided therein and was deployed on 326 MRI from our own data collected through Mount Sinai Medical Center as part of the 1Florida Alzheimer Disease Research Center (ADRC)

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    Thermomechanical modeling and optimization of friction stir welding

    Get PDF
    This thesis research implemented an existing thermomechanical model of friction stir welding process, and studied the surrogate model-based optimization approach to obtain optimal process parameters for the modeled friction stir welding process. As an initial step, the thermomechanical model developed by Zhu and Chao for friction stir welding of 304L stainless steel was replicated using ANSYS. The developed model was then used to conduct parametric studies to understand the effect of various input parameters like total rate of heat input, welding speed and clamping location on temperature distribution and residual stress in the workpiece. With the data from the simulated model, linear and nonlinear surrogate models were constructed using regression analysis to relate the selected input process parameters with response variables. Constrained optimization models were formulated using surrogate models and optimization of process parameters for minimizing cost and maximizing throughput was carried out using improved harmony search algorithm. To handle the constraints, Deb’s parameter-less penalty method was used and implemented in the algorithm. It is learned from this research that: (1) heat input is mainly constrained by the lower bound of the temperature for making good welds; (2) the optimal welding speed must balance the loss of heat input and the gain in productivity; (3) clamping closer to the weld is better than away from the weld in terms of lowering the peak residual stresses. Moreover, the nonlinear surrogate models resulted in a slightly better optimal solution than the linear models when wide temperature range was used. However, for tight temperature constraints, optimization on linear surrogate models produced better results. The implemented improved harmony search algorithm seems not able to converge to the best solution in every run. Nevertheless, the non-converged solution it found was very close to the best

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Machine assisted quantitative seismic interpretation

    Get PDF
    During the past decades, the size of 3D seismic data volumes and the number of seismic attributes have increased to the extent that it is difficult, if not impossible, for interpreters to examine every seismic line and time slice. Reducing the labor associated with seismic interpretation while increasing the reliability of the interpreted result has been an on going challenge that becomes increasingly more difficult with the amount of data available to interpreters. To address this issue, geoscientists often adopt concepts and algorithms from fields such as image processing, signal processing, and statistics, with much of the focus on auto-picking and automatic seismic facies analysis. I focus my research on adapting and improving machine learning and pattern recognition methods for automatic seismic facies analysis. Being an emerging and rapid developing topic, there is an endless list of machine learning and pattern recognition techniques available to scientific researchers. More often, the obstacle that prevents geoscientists from using such techniques is the “black box” nature of such techniques. Interpreters may not know the assumptions and limitations of a given technique, resulting in subsequent choices that may be suboptimum. In this dissertation, I provide a review of the more commonly used seismic facies analysis algorithms. My goal is to assist seismic interpreters in choosing the best method for a specific problem. Moreover, because all these methods are just generic mathematic tools that solve highly abstract, analytical problems, we have to tailor them to fit seismic interpretation problems. Self-organizing map (SOM) is a popular unsupervised learning technique that interpreters use to explore seismic facies using multiple seismic attributes as input. It projects the high dimensional seismic attribute data onto a lower dimensional (usually 2D) space in which interpreters are able to identify clusters of seismic facies. In this dissertation, using SOM as an example, I provide three improvements on the traditional algorithm, in order to present the information residing in the seismic attributes more adequately, and therefore reducing the uncertainly in the generated seismic facies map

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
    • …
    corecore