24,441 research outputs found

    Latent sentiment model for weakly-supervised cross-lingual sentiment classification

    No full text
    In this paper, we present a novel weakly-supervised method for crosslingual sentiment analysis. In specific, we propose a latent sentiment model (LSM) based on latent Dirichlet allocation where sentiment labels are considered as topics. Prior information extracted from English sentiment lexicons through machine translation are incorporated into LSM model learning, where preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. An efficient parameter estimation procedure using variational Bayes is presented. Experimental results on the Chinese product reviews show that the weakly-supervised LSM model performs comparably to supervised classifiers such as Support vector Machines with an average of 81% accuracy achieved over a total of 5484 review documents. Moreover, starting with a generic sentiment lexicon, the LSM model is able to extract highly domainspecific polarity words from text

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Linguistic Geometries for Unsupervised Dimensionality Reduction

    Full text link
    Text documents are complex high dimensional objects. To effectively visualize such data it is important to reduce its dimensionality and visualize the low dimensional embedding as a 2-D or 3-D scatter plot. In this paper we explore dimensionality reduction methods that draw upon domain knowledge in order to achieve a better low dimensional embedding and visualization of documents. We consider the use of geometries specified manually by an expert, geometries derived automatically from corpus statistics, and geometries computed from linguistic resources.Comment: 13 pages, 15 figure
    • …
    corecore