1,693 research outputs found

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain

    Fuzzy reasoning spiking neural P systems revisited: A formalization

    Get PDF
    Research interest within membrane computing is becoming increasingly interdisciplinary.In particular, one of the latest applications is fault diagnosis. The underlying mechanismwas conceived by bridging spiking neural P systems with fuzzy rule-based reasoning systems. Despite having a number of publications associated with it, this research line stilllacks a proper formalization of the foundations.National Natural Science Foundation of China No 61320106005National Natural Science Foundation of China No 6147232

    Logic Negation with Spiking Neural P Systems

    Full text link
    Nowadays, the success of neural networks as reasoning systems is doubtless. Nonetheless, one of the drawbacks of such reasoning systems is that they work as black-boxes and the acquired knowledge is not human readable. In this paper, we present a new step in order to close the gap between connectionist and logic based reasoning systems. We show that two of the most used inference rules for obtaining negative information in rule based reasoning systems, the so-called Closed World Assumption and Negation as Finite Failure can be characterized by means of spiking neural P systems, a formal model of the third generation of neural networks born in the framework of membrane computing.Comment: 25 pages, 1 figur

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Pemilihan kerjaya di kalangan pelajar aliran perdagangan sekolah menengah teknik : satu kajian kes

    Get PDF
    This research is a survey to determine the career chosen of form four student in commerce streams. The important aspect of the career chosen has been divided into three, first is information about career, type of career and factor that most influence students in choosing a career. The study was conducted at Sekolah Menengah Teknik Kajang, Selangor Darul Ehsan. Thirty six form four students was chosen by using non-random sampling purpose method as respondent. All information was gather by using questionnaire. Data collected has been analyzed in form of frequency, percentage and mean. Results are performed in table and graph. The finding show that information about career have been improved in students career chosen and mass media is the main factor influencing students in choosing their career

    Platonic model of mind as an approximation to neurodynamics

    Get PDF
    Hierarchy of approximations involved in simplification of microscopic theories, from sub-cellural to the whole brain level, is presented. A new approximation to neural dynamics is described, leading to a Platonic-like model of mind based on psychological spaces. Objects and events in these spaces correspond to quasi-stable states of brain dynamics and may be interpreted from psychological point of view. Platonic model bridges the gap between neurosciences and psychological sciences. Static and dynamic versions of this model are outlined and Feature Space Mapping, a neurofuzzy realization of the static version of Platonic model, described. Categorization experiments with human subjects are analyzed from the neurodynamical and Platonic model points of view

    Neural implementation of psychological spaces

    Get PDF
    Psychological spaces give natural framework for construction of mental representations. Neural model of psychological spaces provides a link between neuroscience and psychology. Categorization performed in high-dimensional spaces by dynamical associative memory models is approximated with low-dimensional feedforward neural models calculating probability density functions in psychological spaces. Applications to the human categorization experiments are discussed
    corecore