349,900 research outputs found

    Massively Parallel Simulation of Structured Connectionist Networks: An Interim Report

    Get PDF
    We map structured connectionist models of knowledge representation and reasoning onto existing general purpose massively parallel architectures with the objective of developing and implementing practical, real-time knowledge base systems. Shruti, a connectionist knowledge representation and reasoning system which attempts to model reflexive reasoning, will serve as our representative connectionist model. Efficient simulation systems for shruti are developed on the Connection Machine CM-2 - an SIMD architecture - and on the Connection Machine CM-5 - an MIMD architecture. The resulting simulators are evaluated and tested using large, random knowledge bases with up to half a million rules and facts. Though SIMD simulations on the CM-2 are reasonably fast - requiring a few seconds to tens of seconds for answering simple queries - experiments indicate that MIMD simulations are vastly superior to SIMD simulations and offer hundred- to thousand-fold speedups. This work provides new insights into the simulation of structured connectionist networks on massively parallel machines and is a step toward developing large yet efficient knowledge representation and reasoning systems

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)

    Graph-based Molecular Representation Learning

    Full text link
    Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science. In particular, it encodes molecules as numerical vectors preserving the molecular structures and features, on top of which the downstream tasks (e.g., property prediction) can be performed. Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning. In this survey, we systematically review these graph-based molecular representation techniques, especially the methods incorporating chemical domain knowledge. Specifically, we first introduce the features of 2D and 3D molecular graphs. Then we summarize and categorize MRL methods into three groups based on their input. Furthermore, we discuss some typical chemical applications supported by MRL. To facilitate studies in this fast-developing area, we also list the benchmarks and commonly used datasets in the paper. Finally, we share our thoughts on future research directions

    Massively parallel reasoning in transitive relationship hierarchies

    Get PDF
    This research focuses on building a parallel knowledge representation and reasoning system for the purpose of making progress in realizing human-like intelligence. To achieve human-like intelligence, it is necessary to model human reasoning processes by programs. Knowledge in the real world is huge in size, complex in structure, and is also constantly changing even in limited domains. Unfortunately, reasoning algorithms are very often intractable, which means that they are too slow for any practical applications. One technique to deal with this problem is to design special-purpose reasoners. Many past Al systems have worked rather nicely for limited problem sizes, but attempts to extend them to realistic subsets of world knowledge have led to difficulties. Even special purpose reasoners are not immune to this impasse. In this work, to overcome this problem, we are combining special purpose reasoners with massive We have developed and implemented a massively parallel transitive closure reasoner, called Hydra, that can dynamically assimilate any transitive, binary relation and efficiently answer queries using the transitive closure of all those relations. Within certain limitations, we achieve constant-time responses for transitive closure queries. Hydra can dynamically insert new concepts or new links into a. knowledge base for realistic problem sizes. To get near human-like reasoning capabilities requires the possibility of dynamic updates of the transitive relation hierarchies. Our incremental, massively parallel, update algorithms can achieve almost constant time updates of large knowledge bases. Hydra expands the boundaries of Knowledge Representation and Reasoning in a number of different directions: (1) Hydra improves the representational power of current systems. We have developed a set-based representation for class hierarchies that makes it easy to represent class hierarchies on arrays of processors. Furthermore, we have developed and implemented two methods for mapping this set-based representation onto the processor space of a Connection Machine. These two representations, the Grid Representation and the Double Strand Representation successively improve transitive closure reasoning in terms of speed and processor utilization. (2) Hydra allows fast rerieval and dynamic update of a large knowledge base. New fast update algorithms are formulated to dynamically insert new concepts or new relations into a knowledge base of thousands of nodes. (3) Hydra provides reasoning based on mixed hierarchical representations. We have designed representational tools and massively parallel reasoning algorithms to model reasoning in combined IS-A, Part-of, and Contained-in hierarchies. (4) Hydra\u27s reasoning facilities have been successfully applied to the Medical Entities Dictionary, a large medical vocabulary of Columbia Presbyterian Medical Center. As a result of (1) - (3), Hydra is more general than many current special-purpose reasoners, faster than currently existing general-purpose reasoners, and its knowledge base can be updated dynamically

    Engineering polymer informatics: Towards the computer-aided design of polymers

    Get PDF
    The computer-aided design of polymers is one of the holy grails of modern chemical informatics and of significant interest for a number of communities in polymer science. The paper outlines a vision for the in silico design of polymers and presents an information model for polymers based on modern semantic web technologies, thus laying the foundations for achieving the vision

    Representation and use of chemistry in the global electronic age.

    Get PDF
    We present an overview of the current state of public semantic chemistry and propose new approaches at a strategic and a detailed level. We show by example how a model for a Chemical Semantic Web can be constructed using machine-processed data and information from journal articles.This manuscript addresses questions of robotic access to data and its automatic re-use, including the role of Open Access archival of data. This is a pre-refereed preprint allowed by the publisher's (Royal Soc. Chemistry) Green policy. The author's preferred manuscript is an HTML hyperdocument with ca. 20 links to images, some of which are JPEgs and some of which are SVG (scalable vector graphics) including animations. There are also links to molecules in CML, for which the Jmol viewer is recommended. We susgeest that readers who wish to see the full glory of the manuscript, download the Zipped version and unpack on their machine. We also supply a PDF and DOC (Word) version which obviously cannot show the animations, but which may be the best palce to start, particularly for those more interested in the text

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page
    • …
    corecore