1,975,163 research outputs found

    Supercritical Water Gasification: Practical Design Strategies and Operational Challenges for Lab-Scale, Continuous Flow Reactors

    Full text link
    Optimizing an industrial-scale supercritical water gasification process requires detailed knowledge of chemical reaction pathways, rates, and product yields. Laboratory-scale reactors are employed to develop this knowledge base. The rationale behind designs and component selection of continuous flow, laboratory-scale supercritical water gasification reactors is analyzed. Some design challenges have standard solutions, such as pressurization and preheating, but issues with solid precipitation and feedstock pretreatment still present open questions. Strategies for reactant mixing must be evaluated on a system-by-system basis, depending on feedstock and experimental goals, as mixing can affect product yields, char formation, and reaction pathways. In-situ Raman spectroscopic monitoring of reaction chemistry promises to further fundamental knowledge of gasification and decrease experimentation time. High-temperature, high-pressure spectroscopy in supercritical water conditions is performed, however, long-term operation flow cell operation is challenging. Comparison of Raman spectra for decomposition of formic acid in the supercritical region and cold section of the reactor demonstrates the difficulty in performing quantitative spectroscopy in the hot zone. Future designs and optimization of SCWG reactors should consider well-established solutions for pressurization, heating, and process monitoring, and effective strategies for mixing and solids handling for long-term reactor operation and data collection

    Motives for Innovation Co-operation? Evidence from the Canadian Survey of Innovation

    Get PDF
    In this paper we analyse the decision of firms in the Canadian manufacturing sector to co-operate on innovation projects. Our focus is on the motives behind this decision and the firm characteristics, both general and with respect to innovation activities, which influence the motives for innovation co-operation. Using data from the Canadian Survey of Innovation 2005 we find that the factors influencing the decision to co-operate in order to access external knowledge are very similar to those influencing cost-sharing motives. We also show that public funding leads firms to cooperate in order to access external knowledge and R&D. --Innovation Co-operation,Motives for Co-operation,Canadian Survey of Innovation

    Adding control to arbitrary unknown quantum operations

    Get PDF
    While quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations-a requirement in many quantum algorithms, simulations and metrology. The technique is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. We demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity.Comment: 9 pages, 8 figure

    An analysis of the equational properties of the well-founded fixed point

    Full text link
    Well-founded fixed points have been used in several areas of knowledge representation and reasoning and to give semantics to logic programs involving negation. They are an important ingredient of approximation fixed point theory. We study the logical properties of the (parametric) well-founded fixed point operation. We show that the operation satisfies several, but not all of the equational properties of fixed point operations described by the axioms of iteration theories

    Old institutions, new challenges: the agricultural knowledge system in Hungary

    Get PDF
    This paper explores and analyses the Hungarian institutional system for the creation and the transfer of knowledge in the fi eld of agriculture and rural development. We consider the constitution and operation of the Agricultural Knowledge System (AKS) in Hungary, focussing on the formally organised aspects, and suggest that both the structure and content of the knowledge needed in the sector have signifi cantly changed during the past decades. These changes, especially in relation to the sustainability of agriculture, pose signifi cant challenges to traditional AKS institutions, which often have failed to change in line with the new requirements. Based on a literature review, interviews and a national stakeholder workshop, we offer an analysis of Hungarian AKS institutions, their co-ordination, co-operation and communication with each other and with Hungarian rurality, and of the arising issues and problems concerning the creation and the fl ow of knowledge needed for sustainable agriculture. We also briefl y explore characteristics of emerging bottom-up structures, called LINSAS (learning and innovation networks for sustainable agriculture), and explore the signifi cance of the fi ndings in this article for the study of AKS in Europe. This article is based on preliminary results of the SOLINSA research project, supported by the European Union’s Seventh Framework Programme

    A knowledge-based system for the automatic chronopotentiometric elucidation of electrode reaction mechanisms

    Get PDF
    A knowledge-based system for the elucidation of electrode reaction mechanisms based on chronopotentiometric experiments is described. The system runs the diagnostic experiments and uses the results in the reasoning process. New mechanistic knowledge can be added directly to its knowledge base in the form of production rules. The system is fully modular and its domain- specific modules can easily be changed for application to other electrochemical techniques. Correct operation of the system is demonstrated with the familiar reduction mechanisms of cadmium (II), zinc (II), cystamine and cinnamaldehyde

    Increasing the power of the verifier in Quantum Zero Knowledge

    Get PDF
    In quantum zero knowledge, the assumption was made that the verifier is only using unitary operations. Under this assumption, many nice properties have been shown about quantum zero knowledge, including the fact that Honest-Verifier Quantum Statistical Zero Knowledge (HVQSZK) is equal to Cheating-Verifier Quantum Statistical Zero Knowledge (QSZK) (see [Wat02,Wat06]). In this paper, we study what happens when we allow an honest verifier to flip some coins in addition to using unitary operations. Flipping a coin is a non-unitary operation but doesn't seem at first to enhance the cheating possibilities of the verifier since a classical honest verifier can flip coins. In this setting, we show an unexpected result: any classical Interactive Proof has an Honest-Verifier Quantum Statistical Zero Knowledge proof with coins. Note that in the classical case, honest verifier SZK is no more powerful than SZK and hence it is not believed to contain even NP. On the other hand, in the case of cheating verifiers, we show that Quantum Statistical Zero Knowledge where the verifier applies any non-unitary operation is equal to Quantum Zero-Knowledge where the verifier uses only unitaries. One can think of our results in two complementary ways. If we would like to use the honest verifier model as a means to study the general model by taking advantage of their equivalence, then it is imperative to use the unitary definition without coins, since with the general one this equivalence is most probably not true. On the other hand, if we would like to use quantum zero knowledge protocols in a cryptographic scenario where the honest-but-curious model is sufficient, then adding the unitary constraint severely decreases the power of quantum zero knowledge protocols.Comment: 17 pages, 0 figures, to appear in FSTTCS'0
    • …
    corecore