1,589 research outputs found

    CICHMKG: a large-scale and comprehensive Chinese intangible cultural heritage multimodal knowledge graph

    Get PDF
    Intangible Cultural Heritage (ICH) witnesses human creativity and wisdom in long histories, composed of a variety of immaterial manifestations. The rapid development of digital technologies accelerates the record of ICH, generating a sheer number of heterogenous data but in a state of fragmentation. To resolve that, existing studies mainly adopt approaches of knowledge graphs (KGs) which can provide rich knowledge representation. However, most KGs are text-based and text-derived, and incapable to give related images and empower downstream multimodal tasks, which is also unbeneficial for the public to establish the visual perception and comprehend ICH completely especially when they do not have the related ICH knowledge. Hence, aimed at that, we propose to, taking the Chinese nation-level ICH list as an example, construct a large-scale and comprehensive Multimodal Knowledge Graph (CICHMKG) combining text and image entities from multiple data sources and give a practical construction framework. Additionally, in this paper, to select representative images for ICH entities, we propose a method composed of the denoising algorithm (CNIFA) and a series of criteria, utilizing global and local visual features of images and textual features of captions. Extensive empirical experiments demonstrate its effectiveness. Lastly, we construct the CICHMKG, consisting of 1,774,005 triples, and visualize it to facilitate the interactions and help the public dive into ICH deeply

    Entity Graph Extraction from Legal Acts -- a Prototype for a Use Case in Policy Design Analysis

    Full text link
    This paper presents research on a prototype developed to serve the quantitative study of public policy design. This sub-discipline of political science focuses on identifying actors, relations between them, and tools at their disposal in health, environmental, economic, and other policies. Our system aims to automate the process of gathering legal documents, annotating them with Institutional Grammar, and using hypergraphs to analyse inter-relations between crucial entities. Our system is tested against the UNESCO Convention for the Safeguarding of the Intangible Cultural Heritage from 2003, a legal document regulating essential aspects of international relations securing cultural heritage.Comment: 17 pages, 10 figure

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    FEW SHOT PHOTOGRAMETRY: A COMPARISON BETWEEN NERF AND MVS-SFM FOR THE DOCUMENTATION OF CULTURAL HERITAGE

    Get PDF
    3D documentation methods for Digital Cultural Heritage (DCH) domain is a field that becomes increasingly interdisciplinary, breaking down boundaries that have long separated experts from different domains. In the past, there has been an ambiguous claim for ownership of skills, methodologies, and expertise in the heritage sciences. This study aims to contribute to the dialogue between these different disciplines by presenting a novel approach for 3D documentation of an ancient statue. The method combines TLS acquisition and MVS pipeline using images from a DJI Mavic 2 drone. Additionally, the study compares the accuracy and final product of the Deep Points (DP) and Neural Radiance Fields (NeRF) methods, using the TLS acquisition as validation ground truth. Firstly, a TLS acquisition was performed on an ancient statue using a Faro Focus 2 scanner. Next, a multi-view stereo (MVS) pipeline was adopted using 2D images captured by a Mini-2 DJI Mavic 2 drone from a distance of approximately 1 meter around the statue. Finally, the same images were used to train and run the NeRF network after being reduced by 90%. The main contribution of this paper is to improve our understanding of this method and compare the accuracy and final product of two different approaches - direct projection (DP) and NeRF - by exploiting a TLS acquisition as the validation ground truth. Results show that the NeRF approach outperforms DP in terms of accuracy and produces a more realistic final product. This paper has important implications for the field of CH preservation, as it offers a new and effective method for generating 3D models of ancient statues. This technology can help to document and preserve important cultural artifacts for future generations, while also providing new insights into the history and culture of different civilizations. Overall, the results of this study demonstrate the potential of combining TLS and NeRF for generating accurate and realistic 3D models of ancient statues

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    Towards a Semantics-Based Recommendation System for Cultural Heritage Collections

    Get PDF
    While the use of semantic technologies is now commonplace in the cultural heritage sector and several semantically annotated cultural heritage datasets are publicly available, there are few examples of cultural portals that exploit these datasets and technologies to improve the experience of visitors to their online collections. Aiming to address this gap, this paper explores methods for semantics-based recommendations aimed at visitors to cultural portals who want to explore online collections. The proposed methods exploit the rich semantic metadata in a cultural heritage dataset and the capabilities of a graph database system to improve the accuracy of searches through the collection and the quality of the recommendations provided to the user. The methods were developed and tested with the Archive of the Art Textbooks of Elementary and Public Schools in the Japanese Colonial Period. However, they can easily be adapted to any cultural heritage collection dataset modelled in RDF

    Virtual Knowledge Graphs: An Overview of Systems and Use Cases

    Get PDF
    In this paper, we present the virtual knowledge graph (VKG) paradigm for data integration and access, also known in the literature as Ontology-based Data Access. Instead of structuring the integration layer as a collection of relational tables, the VKG paradigm replaces the rigid structure of tables with the flexibility of graphs that are kept virtual and embed domain knowledge. We explain the main notions of this paradigm, its tooling ecosystem and significant use cases in a wide range of applications. Finally, we discuss future research directions

    Literature review on the information system for digitization of royal history and Waqf

    Get PDF
    There has been a significant increase in the study of the history and culture of historical artifacts, whether they take the form of cultural heritage or Waqf. A literature review of web-based information systems was conducted for digitizing historical preservation and Waqf. Papers were sourced from various databases, including Publish or Perish, which produced 1043 journals, 370 articles, and 673 items from reputable sources, Google Scholar, and Crossref, respectively. The focus of the literature review was the information system for digitizing history and Waqf and integrating ontology databases. This literature review study aims to trace the evolution of study objects related to history and endowments. The results showed that most studies emphasized the user-understanding aspect of digitization, while the technical aspect was focused on using cutting-edge technology, such as 3D and virtual reality

    Connecting works of art within the semantic web of symbolic meanings

    Get PDF
    My doctoral research is about the modelling of symbolism in the cultural heritage domain, and on connecting artworks based on their symbolism through knowledge extraction and representation techniques. In particular, I participated in the design of two ontologies: one models the relationships between a symbol, its symbolic meaning, and the cultural context in which the symbol symbolizes the symbolic meaning; the second models artistic interpretations of a cultural heritage object from an iconographic and iconological (thus also symbolic) perspective. I also converted several sources of unstructured data, a dictionary of symbols and an encyclopaedia of symbolism, and semi-structured data, DBpedia and WordNet, to create HyperReal, the first knowledge graph dedicated to conventional cultural symbolism. By making use of HyperReal's content, I showed how linked open data about cultural symbolism could be utilized to initiate a series of quantitative studies that analyse (i) similarities between cultural contexts based on their symbologies, (ii) broad symbolic associations, (iii) specific case studies of symbolism such as the relationship between symbols, their colours, and their symbolic meanings. Moreover, I developed a system that can infer symbolic, cultural context-dependent interpretations from artworks according to what they depict, envisioning potential use cases for museum curation. I have then re-engineered the iconographic and iconological statements of Wikidata, a widely used general-domain knowledge base, creating ICONdata: an iconographic and iconological knowledge graph. ICONdata was then enriched with automatic symbolic interpretations. Subsequently, I demonstrated the significance of enhancing artwork information through alignment with linked open data related to symbolism, resulting in the discovery of novel connections between artworks. Finally, I contributed to the creation of a software application. This application leverages established connections, allowing users to investigate the symbolic expression of a concept across different cultural contexts through the generation of a three-dimensional exhibition of artefacts symbolising the chosen concept

    Interacting with Philosophy Through Natural Language Conversation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore