1,722 research outputs found

    Flaring Behavior of the Quasar 3C~454.3 across the Electromagnetic Spectrum

    Full text link
    We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors Γ>\Gamma>10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the RR-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and γ\gamma-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jet's acceleration and collimation zone.Comment: 57 pages, 23 figures, 8 tables (submitted to ApJ

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    Mass and dust in the disk of a spiral lens galaxy

    Full text link
    Gravitational lensing is a potentially important probe of spiral galaxy structure, but only a few cases of lensing by spiral galaxies are known. We present Hubble Space Telescope and Magellan observations of the two-image quasar PMN J2004-1349, revealing that the lens galaxy is a spiral galaxy. One of the quasar images passes through a spiral arm of the galaxy and suffers 3 magnitudes of V-band extinction. Using simple lens models, we show that the mass quadrupole is well-aligned with the observed galaxy disk. A more detailed model with components representing the bulge and disk gives a bulge-to-disk mass ratio of 0.16 +/- 0.05. The addition of a spherical dark halo, tailored to produce an overall flat rotation curve, does not change this conclusion.Comment: ApJ, in press [9pp, 7 figs

    Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars

    Get PDF
    We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z ~ 3, with predictions to z = 7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened/obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio

    GeV Gamma-Ray Attenuation and the High-Redshift UV Background

    Get PDF
    We present new calculations of the evolving UV background out to the epoch of cosmological reionization and make predictions for the amount of GeV gamma-ray attenuation by electron-positron pair production. Our results are based on recent semi-analytic models of galaxy formation, which provide predictions of the dust-extinguished UV radiation field due to starlight, and empirical estimates of the contribution due to quasars. We account for the reprocessing of ionizing photons by the intergalactic medium. We test whether our models can reproduce estimates of the ionizing background at high redshift from flux decrement analysis and proximity effect measurements from quasar spectra, and identify a range of models that can satisfy these constraints. Pair-production against soft diffuse photons leads to a spectral cutoff feature for gamma rays observed between 10 and 100 GeV. This cutoff varies with redshift and the assumed star formation and quasar evolution models. We find only negligible amounts of absorption for gamma rays observed below 10 GeV for any emission redshift. With observations of high-redshift sources in sufficient numbers by the Fermi Gamma-ray Space Telescope and new ground-based instruments it should be possible to constrain the extragalactic background light in the UV and optical portion of the spectrum.Comment: 19 pages, 12 figures, Accepted for publication in MNRAS, this version includes minor correction

    Evolution of Cosmic System

    Get PDF
    • …
    corecore