59,772 research outputs found

    THE "POWER" OF TEXT PRODUCTION ACTIVITY IN COLLABORATIVE MODELING : NINE RECOMMENDATIONS TO MAKE A COMPUTER SUPPORTED SITUATION WORK

    Get PDF
    Language is not a direct translation of a speaker’s or writer’s knowledge or intentions. Various complex processes and strategies are involved in serving the needs of the audience: planning the message, describing some features of a model and not others, organizing an argument, adapting to the knowledge of the reader, meeting linguistic constraints, etc. As a consequence, when communicating about a model, or about knowledge, there is a complex interaction between knowledge and language. In this contribution, we address the question of the role of language in modeling, in the specific case of collaboration over a distance, via electronic exchange of written textual information. What are the problems/dimensions a language user has to deal with when communicating a (mental) model? What is the relationship between the nature of the knowledge to be communicated and linguistic production? What is the relationship between representations and produced text? In what sense can interactive learning systems serve as mediators or as obstacles to these processes

    Problem-based learning: enhancing students learning of building information modelling

    Get PDF
    Building Information Modelling (BIM) is an innovative collaborative process underpinned by digital technologies introduced to improve project performance in the Architecture, Engineering and Construction (AEC) industry. Growth in industry demands has necessitated BIM inclusion into the Higher Education (HE) curricula as both a pedagogic and practical objective to prepare and develop aspiring Built Environment (BE) professionals with the required competence for contemporary practice. However, comprehension of BIM concepts and developing the skill set required for its application can be overwhelming for students and crucial to mitigating this challenge is the adoption of appropriate learner-centred strategies. Problem-based Learning (PBL) is becoming a widespread strategy to address such concern. This paper evaluates the impact of PBL strategy on students accelerated learning of BIM based on a case study of an undergraduate BIM module. Findings from the study show PBL benefits on students’ knowledge acquisition (cognitive and affective) of BIM concept and development of transferable skills (academic and disciplinary) equipping them with capabilities to become BIM competent and workplace ready for the AEC industry

    A semantic web approach for built heritage representation

    Get PDF
    In a built heritage process, meant as a structured system of activities aimed at the investigation, preservation, and management of architectural heritage, any task accomplished by the several actors involved in it is deeply influenced by the way the knowledge is represented and shared. In the current heritage practice, knowledge representation and management have shown several limitations due to the difficulty of dealing with large amount of extremely heterogeneous data. On this basis, this research aims at extending semantic web approaches and technologies to architectural heritage knowledge management in order to provide an integrated and multidisciplinary representation of the artifact and of the knowledge necessary to support any decision or any intervention and management activity. To this purpose, an ontology-based system, representing the knowledge related to the artifact and its contexts, has been developed through the formalization of domain-specific entities and relationships between them

    What Can Be Learned from Computer Modeling? Comparing Expository and Modeling Approaches to Teaching Dynamic Systems Behavior

    Get PDF
    Computer modeling has been widely promoted as a means to attain higher order learning outcomes. Substantiating these benefits, however, has been problematic due to a lack of proper assessment tools. In this study, we compared computer modeling with expository instruction, using a tailored assessment designed to reveal the benefits of either mode of instruction. The assessment addresses proficiency in declarative knowledge, application, construction, and evaluation. The subscales differentiate between simple and complex structure. The learning task concerns the dynamics of global warming. We found that, for complex tasks, the modeling group outperformed the expository group on declarative knowledge and on evaluating complex models and data. No differences were found with regard to the application of knowledge or the creation of models. These results confirmed that modeling and direct instruction lead to qualitatively different learning outcomes, and that these two modes of instruction cannot be compared on a single “effectiveness measure”

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    The ITALK project : A developmental robotics approach to the study of individual, social, and linguistic learning

    Get PDF
    This is the peer reviewed version of the following article: Frank Broz et al, “The ITALK Project: A Developmental Robotics Approach to the Study of Individual, Social, and Linguistic Learning”, Topics in Cognitive Science, Vol 6(3): 534-544, June 2014, which has been published in final form at doi: http://dx.doi.org/10.1111/tops.12099 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." Copyright © 2014 Cognitive Science Society, Inc.This article presents results from a multidisciplinary research project on the integration and transfer of language knowledge into robots as an empirical paradigm for the study of language development in both humans and humanoid robots. Within the framework of human linguistic and cognitive development, we focus on how three central types of learning interact and co-develop: individual learning about one's own embodiment and the environment, social learning (learning from others), and learning of linguistic capability. Our primary concern is how these capabilities can scaffold each other's development in a continuous feedback cycle as their interactions yield increasingly sophisticated competencies in the agent's capacity to interact with others and manipulate its world. Experimental results are summarized in relation to milestones in human linguistic and cognitive development and show that the mutual scaffolding of social learning, individual learning, and linguistic capabilities creates the context, conditions, and requisites for learning in each domain. Challenges and insights identified as a result of this research program are discussed with regard to possible and actual contributions to cognitive science and language ontogeny. In conclusion, directions for future work are suggested that continue to develop this approach toward an integrated framework for understanding these mutually scaffolding processes as a basis for language development in humans and robots.Peer reviewe

    Fostering reflection in the training of speech-receptive action

    Get PDF
    Dieser Aufsatz erörtert Möglichkeiten und Probleme der Förderung kommunikativer Fertigkeiten durch die UnterstĂŒtzung der Reflexion eigenen sprachrezeptiven Handelns und des Einsatzes von computerunterstĂŒtzten Lernumgebungen fĂŒr dessen Förderung. Kommunikationstrainings widmen sich meistens der Förderung des beobachtbaren sprachproduktiven Handelns (Sprechen). Die individuellen kognitiven Prozesse, die dem sprachrezeptiven Handeln (Hören und Verstehen) zugrunde liegen, werden hĂ€ufig vernachlĂ€ssigt. Dies wird dadurch begrĂŒndet, dass sprachrezeptives Handeln in einer kommunikativen Situation nur schwer zugĂ€nglich und die Förderung der individuellen Prozesse sprachrezeptiven Handelns sehr zeitaufwĂ€ndig ist. Das zentrale Lernprinzip - die Reflexion des eigenen sprachlich-kommunikativen Handelns - wird aus verschiedenen Perspektiven diskutiert. Vor dem Hintergrund der Reflexionsmodelle wird die computerunterstĂŒtzte Lernumgebung CaiMan© vorgestellt und beschrieben. Daran anschließend werden sieben Erfolgsfaktoren aus der empirischen Forschung zur Lernumgebung CaiMan© abgeleitet. Der Artikel endet mit der Vorstellung von zwei empirischen Studien, die Möglichkeiten der ReflexionsunterstĂŒtzung untersucheThis article discusses the training of communicative skills by fostering the reflection of speech-receptive action and the opportunities for using software for this purpose. Most frameworks for the training of communicative behavior focus on fostering the observable speech-productive action (i.e. speaking); the individual cognitive processes underlying speech-receptive action (hearing and understanding utterances) are often neglected. Computer-supported learning environments employed as cognitive tools can help to foster speech-receptive action. Seven success factors for the integration of software into the training of soft skills have been derived from empirical research. The computer-supported learning environment CaiMan© based on these ideas is presented. One central learning principle in this learning environment reflection of one's own action will be discussed from different perspectives. The article concludes with two empirical studies examining opportunities to foster reflecti
    • 

    corecore