154 research outputs found

    Hybrid features and ensembles of convolution neural networks for weed detection

    Get PDF
    Weeds compete with plants for sunlight, nutrients and water. Conventional weed management involves spraying of herbicides to the entire crop which increases the cost of cultivation, decreasing the quality of the crop, in turn affecting human health. Precise automatic spraying of the herbicides on weeds has been in research and use. This paper discusses automatic weed detection using hybrid features which is generated by extracting the deep features from convolutional neural network (CNN) along with the texture and color features. The color and texture features are extracted by color moments, gray level co-occurrence matrix (GLCM) and Gabor wavelet transform. The proposed hybrid features are classified by Bayesian optimized support vector machine (BO-SVM) classifier. The experimental results read that the proposed hybrid features yield a maximum accuracy of 95.83%, higher precision, sensitivity and F-score. A performance analysis of the proposed hybrid features with BO-SVM classifier in terms of the evaluation parameters is made using the images from crop weed field image dataset

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible

    Deep learning for computer vision constrained by limited supervision

    Get PDF
    This thesis presents the research work conducted on developing algo- rithms capable of training neural networks for image classification and re- gression in low supervision settings. The research was conducted on publicly available benchmark image datasets as well as real world data with appli- cations to herbage quality estimation in an agri-tech scope at the VistaMilk SFI centre. Topics include label noise and web-crawled datasets where some images have an incorrect classification label, semi-supervised learning where only a small part of the available images have been annotated by humans and unsupervised learning where the images are not annotated. The principal contributions are summarized as follows. Label noise: a study highlighting the dual in- and out-of-distribution nature of web-noise; a noise detection metric than can independently retrieve each noise type; an observation of the linear separability of in- and out-of-distribution images in unsupervised contrastive feature spaces; two noise-robust algorithms DSOS and SNCF that iteratively improve the state-of-the-art accuracy on the mini-Webvision dataset. Semi-supervised learning: we use unsupervised features to propagate labels from a few labeled examples to the entire dataset; ReLaB an algorithm that allows to decrease the classification error up to 8% with one labeled representative image on CIFAR-10. Biomass composition estimation from images: two semi-supervised approaches that utilize unlabeled images either through an approximate annotator or by adapting semi-supervised algorithms from the image classification litterature. To scale the biomass to drone images, we use super-resolution paired with semi-supervised learning. Early results on grass biomass estimation show the feasibility of automating the process with accuracies on par or better than human experts. The conclusion of the thesis will summarize the research contributions and discuss thoughts on future research that I believe should be tackled in the field of low supervision computer vision

    Convolutional neural network-based skin cancer classification with transfer learning models

    Get PDF
    Skin cancer is a medical condition characterized by abnormal growth of skin cells. This occurs when the DNA within these skin cells becomes damaged. In addition, it is a prevalent form of cancer that can result in fatalities if not identified in its early stages. A skin biopsy is a necessary step in determining the presence of skin cancer. However, this procedure requires time and expertise. In recent times, artificial intelligence and deep learning algorithms have exhibited superior performance compared with humans in visual tasks. This result can be attributed to improved processing capabilities and the availability of vast datasets. Automated classification driven by these advancements has the potential to facilitate the early identification of skin cancer. Traditional diagnostic methods might overlook certain cases, whereas artificial intelligence-powered approaches offer a broader perspective. Transfer learning is a widely used technique in deep learning, involving the use of pre-trained models. These models are extensively implemented in healthcare, especially in diagnosing and studying skin lesions. Similarly, convolutional neural networks (CNNs) have recently established themselves as highly robust autonomous feature extractors that can achieve excellent accuracy in skin cancer detection because of their high potential. The primary goal of this study was to build deep-learning models designed to perform binary classification of skin cancer into benign and malignant categories. The tasks to resolve are as follows: partitioning the database, allocating 80% of the images to the training set, assigning the remaining 20% to the test set, and applying a preprocessing procedure to the images, aiming to optimize their suitability for our analysis. This involved augmenting the dataset and resizing the images to align them with the specific requirements of each model used in our research; finally, building deep learning models to enable them to perform the classification task. The methods used are a CNNs model and two transfer learning models, i.e., Visual Geometry Group 16 (VGG16) and Visual Geometry Group 19 (VGG19). They are applied to dermoscopic images from the International Skin Image Collaboration Archive (ISIC) dataset to classify skin lesions into two classes and to conduct a comparative analysis. Our results indicated that the VGG16 model outperformed the others, achieving an accuracy of 87% and a loss of 38%. Additionally, the VGG16 model demonstrated the best recall, precision, and F1- score. Comparatively, the VGG16 and VGG19 models displayed superior performance in this classification task compared with the CNN model. Conclusions. The significance of this study stems from the fact that deep learning-based clinical decision support systems have proven to be highly beneficial, offering valuable recommendations to dermatologists during their diagnostic procedures

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Reconciling continuous soil variation and crop yield : a study of some implications of within-field variability for site-specific crop management

    Get PDF
    Within-field variability in cropping system attributes is often obvious but difficult to accurately and efficiently quantity. The magnitude of the variation also changes with attribute, location and time. Importantly, variability at this scale of the soil/crop system may give rise to economic, environmental and societal problems on cropping enterprises under traditional 'uniform' management. In general, the problems arise from a decision to use 'mean-of-field' information to guide the amelioration of an area which may result in zones being under-or over-treated. Gathering data on, and extracting useful management information from, within-field variability is the goal of Precision Agriculture

    Pre-processing, classification and semantic querying of large-scale Earth observation spaceborne/airborne/terrestrial image databases: Process and product innovations.

    Get PDF
    By definition of Wikipedia, “big data is the term adopted for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. The big data challenges typically include capture, curation, storage, search, sharing, transfer, analysis and visualization”. Proposed by the intergovernmental Group on Earth Observations (GEO), the visionary goal of the Global Earth Observation System of Systems (GEOSS) implementation plan for years 2005-2015 is systematic transformation of multisource Earth Observation (EO) “big data” into timely, comprehensive and operational EO value-adding products and services, submitted to the GEO Quality Assurance Framework for Earth Observation (QA4EO) calibration/validation (Cal/Val) requirements. To date the GEOSS mission cannot be considered fulfilled by the remote sensing (RS) community. This is tantamount to saying that past and existing EO image understanding systems (EO-IUSs) have been outpaced by the rate of collection of EO sensory big data, whose quality and quantity are ever-increasing. This true-fact is supported by several observations. For example, no European Space Agency (ESA) EO Level 2 product has ever been systematically generated at the ground segment. By definition, an ESA EO Level 2 product comprises a single-date multi-spectral (MS) image radiometrically calibrated into surface reflectance (SURF) values corrected for geometric, atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic legend is general-purpose, user- and application-independent and includes quality layers, such as cloud and cloud-shadow. Since no GEOSS exists to date, present EO content-based image retrieval (CBIR) systems lack EO image understanding capabilities. Hence, no semantic CBIR (SCBIR) system exists to date either, where semantic querying is synonym of semantics-enabled knowledge/information discovery in multi-source big image databases. In set theory, if set A is a strict superset of (or strictly includes) set B, then A B. This doctoral project moved from the working hypothesis that SCBIR computer vision (CV), where vision is synonym of scene-from-image reconstruction and understanding EO image understanding (EO-IU) in operating mode, synonym of GEOSS ESA EO Level 2 product human vision. Meaning that necessary not sufficient pre-condition for SCBIR is CV in operating mode, this working hypothesis has two corollaries. First, human visual perception, encompassing well-known visual illusions such as Mach bands illusion, acts as lower bound of CV within the multi-disciplinary domain of cognitive science, i.e., CV is conditioned to include a computational model of human vision. Second, a necessary not sufficient pre-condition for a yet-unfulfilled GEOSS development is systematic generation at the ground segment of ESA EO Level 2 product. Starting from this working hypothesis the overarching goal of this doctoral project was to contribute in research and technical development (R&D) toward filling an analytic and pragmatic information gap from EO big sensory data to EO value-adding information products and services. This R&D objective was conceived to be twofold. First, to develop an original EO-IUS in operating mode, synonym of GEOSS, capable of systematic ESA EO Level 2 product generation from multi-source EO imagery. EO imaging sources vary in terms of: (i) platform, either spaceborne, airborne or terrestrial, (ii) imaging sensor, either: (a) optical, encompassing radiometrically calibrated or uncalibrated images, panchromatic or color images, either true- or false color red-green-blue (RGB), multi-spectral (MS), super-spectral (SS) or hyper-spectral (HS) images, featuring spatial resolution from low (> 1km) to very high (< 1m), or (b) synthetic aperture radar (SAR), specifically, bi-temporal RGB SAR imagery. The second R&D objective was to design and develop a prototypical implementation of an integrated closed-loop EO-IU for semantic querying (EO-IU4SQ) system as a GEOSS proof-of-concept in support of SCBIR. The proposed closed-loop EO-IU4SQ system prototype consists of two subsystems for incremental learning. A primary (dominant, necessary not sufficient) hybrid (combined deductive/top-down/physical model-based and inductive/bottom-up/statistical model-based) feedback EO-IU subsystem in operating mode requires no human-machine interaction to automatically transform in linear time a single-date MS image into an ESA EO Level 2 product as initial condition. A secondary (dependent) hybrid feedback EO Semantic Querying (EO-SQ) subsystem is provided with a graphic user interface (GUI) to streamline human-machine interaction in support of spatiotemporal EO big data analytics and SCBIR operations. EO information products generated as output by the closed-loop EO-IU4SQ system monotonically increase their value-added with closed-loop iterations

    Predicting plant environmental exposure using remote sensing

    Get PDF
    Wheat is one of the most important crops globally with 776.4 million tonnes produced in 2019 alone. However, 10% of all wheat yield is predicted to be lost to Septoria Tritici Blotch (STB) caused by Zymoseptoria tritici (Z. tritici). Throughout Europe farmers spend ÂŁ0.9 billion annually on preventative fungicide regimes to protect wheat against Z. tritici. A preventative fungicide regime is used as Z. tritici has a 9-16 day asymptomatic latent phase which makes it difficult to detect before symptoms develop, after which point fungicide intervention is ineffective. In the second chapter of my thesis I use hyperspectral sensing and imaging techniques, analysed with machine learning to detect and predict symptomatic Z. tritici infection in winter wheat, in UK based field trials, with high accuracy. This has the potential to improve detection and monitoring of symptomatic Z. tritici infection and could facilitate precision agriculture methods, to use in the subsequent growing season, that optimise fungicide use and increase yield. In the third chapter of my thesis, I develop a multispectral imaging system which can detect and utilise none visible shifts in plant leaf reflectance to distinguish plants based on the nitrogen source applied. Currently, plants are treated with nitrogen sources to increase growth and yield, the most common being calcium ammonium nitrate. However, some nitrogen sources are used in illicit activities. Ammonium nitrate is used in explosive manufacture and ammonium sulphate in the cultivation and extraction of the narcotic cocaine from Erythroxylum spp. In my third chapter I show that hyperspectral sensing, multispectral imaging, and machine learning image analysis can be used to visualise and differentiate plants exposed to different nefarious nitrogen sources. Metabolomic analysis of leaves from plants exposed to different nitrogen sources reveals shifts in colourful metabolites that may contribute to altered reflectance signatures. This suggests that different nitrogen feeding regimes alter plant secondary metabolism leading to changes in plant leaf reflectance detectable via machine learning of multispectral data but not the naked eye. These results could facilitate the development of technologies to monitor illegal activities involving various nitrogen sources and further inform nitrogen application requirements in agriculture. In my fourth chapter I implement and adapt the hyperspectral sensing, multispectral imaging and machine learning image analysis developed in the third chapter to detect asymptomatic (and symptomatic) Z. tritici infection in winter wheat, in UK based field trials, with high accuracy. This has the potential to improve detection and monitoring of all stages of Z. tritici infection and could facilitate precision agriculture methods to be used during the current growing season that optimise fungicide use and increase yield.Open Acces
    • 

    corecore