6,278 research outputs found

    On the equivalence between graph isomorphism testing and function approximation with GNNs

    Full text link
    Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In the light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints. Using this framework, we compare the expressive power of different classes of GNNs as well as other methods on graphs. In particular, we prove that order-2 Graph G-invariant networks fail to distinguish non-isomorphic regular graphs with the same degree. We then extend them to a new architecture, Ring-GNNs, which succeeds on distinguishing these graphs and provides improvements on real-world social network datasets

    A simple yet effective baseline for non-attributed graph classification

    Full text link
    Graphs are complex objects that do not lend themselves easily to typical learning tasks. Recently, a range of approaches based on graph kernels or graph neural networks have been developed for graph classification and for representation learning on graphs in general. As the developed methodologies become more sophisticated, it is important to understand which components of the increasingly complex methods are necessary or most effective. As a first step, we develop a simple yet meaningful graph representation, and explore its effectiveness in graph classification. We test our baseline representation for the graph classification task on a range of graph datasets. Interestingly, this simple representation achieves similar performance as the state-of-the-art graph kernels and graph neural networks for non-attributed graph classification. Its performance on classifying attributed graphs is slightly weaker as it does not incorporate attributes. However, given its simplicity and efficiency, we believe that it still serves as an effective baseline for attributed graph classification. Our graph representation is efficient (linear-time) to compute. We also provide a simple connection with the graph neural networks. Note that these observations are only for the task of graph classification while existing methods are often designed for a broader scope including node embedding and link prediction. The results are also likely biased due to the limited amount of benchmark datasets available. Nevertheless, the good performance of our simple baseline calls for the development of new, more comprehensive benchmark datasets so as to better evaluate and analyze different graph learning methods. Furthermore, given the computational efficiency of our graph summary, we believe that it is a good candidate as a baseline method for future graph classification (or even other graph learning) studies.Comment: 13 pages. Shorter version appears at 2019 ICLR Workshop: Representation Learning on Graphs and Manifolds. arXiv admin note: text overlap with arXiv:1810.00826 by other author

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i
    corecore