54 research outputs found

    Experiences in evaluating multilingual and text-image information retrieval

    Get PDF
    23 pages, 8 figures.One important step during the development of information retrieval (IR) processes is the evaluation of the output regarding the information needs of the user. The "high quality" of the output is related to the integration of different methods to be applied in the IR process and the information included in the retrieved documents, but how can "quality" be measured? Although some of these methods can be tested in a stand-alone way, it is not always clear what will happen when several methods are integrated. For this reason, much effort has been put into establishing a good combination of several methods or to correctly tuning some of the algorithms involved. The current approach is to measure the precision and recall figures yielded when different combinations of methods are included in an IR process. In this article, a short description of the current techniques and methods included in an IR system is given, paying special attention to the multilingual aspect of the problem. Also a discussion of their influence on the final performance of the IR process is presented by explaining previous experiences in the evaluation process followed in two projects (MIRACLE and OmniPaper) related to multilingual information retrieval.This work has been partially supported by the projects OmniPaper (European Union, 5th Framework Programme for Research and Technological Development, IST-2001-32174), NEDINE (E-Content project Ref.: 22225), and GPS Project—Software Process Management Platform: modeling, reuse, and measurement (National Research Plan, TIN2004-07083).Publicad

    A ranking framework and evaluation for diversity-based retrieval

    Get PDF
    There has been growing momentum in building information retrieval (IR) systems that consider both relevance and diversity of retrieved information, which together improve the usefulness of search results as perceived by users. Some users may genuinely require a set of multiple results to satisfy their information need as there is no single result that completely fulfils the need. Others may be uncertain about their information need and they may submit ambiguous or broad (faceted) queries, either intentionally or unintentionally. A sensible approach to tackle these problems is to diversify search results to address all possible senses underlying those queries or all possible answers satisfying the information need. In this thesis, we explore three aspects of diversity-based document retrieval: 1) recommender systems, 2) retrieval algorithms, and 3) evaluation measures. This first goal of this thesis is to provide an understanding of the need for diversity in search results from the users’ perspective. We develop an interactive recommender system for the purpose of a user study. Designed to facilitate users engaged in exploratory search, the system is featured with content-based browsing, aspectual interfaces, and diverse recommendations. While the diverse recommendations allow users to discover more and different aspects of a search topic, the aspectual interfaces allow users to manage and structure their own search process and results regarding aspects found during browsing. The recommendation feature mines implicit relevance feedback information extracted from a user’s browsing trails and diversifies recommended results with respect to document contents. The result of our user-centred experiment shows that result diversity is needed in realistic retrieval scenarios. Next, we propose a new ranking framework for promoting diversity in a ranked list. We combine two distinct result diversification patterns; this leads to a general framework that enables the development of a variety of ranking algorithms for diversifying documents. To validate our proposal and to gain more insights into approaches for diversifying documents, we empirically compare our integration framework against a common ranking approach (i.e. the probability ranking principle) as well as several diversity-based ranking strategies. These include maximal marginal relevance, modern portfolio theory, and sub-topic-aware diversification based on sub-topic modelling techniques, e.g. clustering, latent Dirichlet allocation, and probabilistic latent semantic analysis. Our findings show that the two diversification patterns can be employed together to improve the effectiveness of ranking diversification. Furthermore, we find that the effectiveness of our framework mainly depends on the effectiveness of the underlying sub-topic modelling techniques. Finally, we examine evaluation measures for diversity retrieval. We analytically identify an issue affecting the de-facto standard measure, novelty-biased discounted cumulative gain (α-nDCG). This issue prevents the measure from behaving as desired, i.e. assessing the effectiveness of systems that provide complete coverage of sub-topics by avoiding excessive redundancy. We show that this issue is of importance as it highly affects the evaluation of retrieval systems, specifically by overrating top-ranked systems that repeatedly retrieve redundant information. To overcome this issue, we derive a theoretically sound solution by defining a safe threshold on a query-basis. We examine the impact of arbitrary settings of the α-nDCG parameter. We evaluate the intuitiveness and reliability of α-nDCG when using our proposed setting on both real and synthetic rankings. We demonstrate that the diversity of document rankings can be intuitively measured by employing the safe threshold. Moreover, our proposal does not harm, but instead increases the reliability of the measure in terms of discriminative power, stability, and sensitivity

    A ranking framework and evaluation for diversity-based retrieval

    Get PDF
    There has been growing momentum in building information retrieval (IR) systems that consider both relevance and diversity of retrieved information, which together improve the usefulness of search results as perceived by users. Some users may genuinely require a set of multiple results to satisfy their information need as there is no single result that completely fulfils the need. Others may be uncertain about their information need and they may submit ambiguous or broad (faceted) queries, either intentionally or unintentionally. A sensible approach to tackle these problems is to diversify search results to address all possible senses underlying those queries or all possible answers satisfying the information need. In this thesis, we explore three aspects of diversity-based document retrieval: 1) recommender systems, 2) retrieval algorithms, and 3) evaluation measures. This first goal of this thesis is to provide an understanding of the need for diversity in search results from the users’ perspective. We develop an interactive recommender system for the purpose of a user study. Designed to facilitate users engaged in exploratory search, the system is featured with content-based browsing, aspectual interfaces, and diverse recommendations. While the diverse recommendations allow users to discover more and different aspects of a search topic, the aspectual interfaces allow users to manage and structure their own search process and results regarding aspects found during browsing. The recommendation feature mines implicit relevance feedback information extracted from a user’s browsing trails and diversifies recommended results with respect to document contents. The result of our user-centred experiment shows that result diversity is needed in realistic retrieval scenarios. Next, we propose a new ranking framework for promoting diversity in a ranked list. We combine two distinct result diversification patterns; this leads to a general framework that enables the development of a variety of ranking algorithms for diversifying documents. To validate our proposal and to gain more insights into approaches for diversifying documents, we empirically compare our integration framework against a common ranking approach (i.e. the probability ranking principle) as well as several diversity-based ranking strategies. These include maximal marginal relevance, modern portfolio theory, and sub-topic-aware diversification based on sub-topic modelling techniques, e.g. clustering, latent Dirichlet allocation, and probabilistic latent semantic analysis. Our findings show that the two diversification patterns can be employed together to improve the effectiveness of ranking diversification. Furthermore, we find that the effectiveness of our framework mainly depends on the effectiveness of the underlying sub-topic modelling techniques. Finally, we examine evaluation measures for diversity retrieval. We analytically identify an issue affecting the de-facto standard measure, novelty-biased discounted cumulative gain (α-nDCG). This issue prevents the measure from behaving as desired, i.e. assessing the effectiveness of systems that provide complete coverage of sub-topics by avoiding excessive redundancy. We show that this issue is of importance as it highly affects the evaluation of retrieval systems, specifically by overrating top-ranked systems that repeatedly retrieve redundant information. To overcome this issue, we derive a theoretically sound solution by defining a safe threshold on a query-basis. We examine the impact of arbitrary settings of the α-nDCG parameter. We evaluate the intuitiveness and reliability of α-nDCG when using our proposed setting on both real and synthetic rankings. We demonstrate that the diversity of document rankings can be intuitively measured by employing the safe threshold. Moreover, our proposal does not harm, but instead increases the reliability of the measure in terms of discriminative power, stability, and sensitivity.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Combining heterogeneous sources in an interactive multimedia content retrieval model

    Get PDF
    Interactive multimodal information retrieval systems (IMIR) increase the capabilities of traditional search systems, by adding the ability to retrieve information of different types (modes) and from different sources. This article describes a formal model for interactive multimodal information retrieval. This model includes formal and widespread definitions of each component of an IMIR system. A use case that focuses on information retrieval regarding sports validates the model, by developing a prototype that implements a subset of the features of the model. Adaptive techniques applied to the retrieval functionality of IMIR systems have been defined by analysing past interactions using decision trees, neural networks, and clustering techniques. This model includes a strategy for selecting sources and combining the results obtained from every source. After modifying the strategy of the prototype for selecting sources, the system is reevaluated using classification techniques.This work was partially supported by eGovernAbility-Access project (TIN2014-52665-C2-2-R)
    • …
    corecore