2,073 research outputs found

    Drugst.One -- A plug-and-play solution for online systems medicine and network-based drug repurposing

    Full text link
    In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities. To tackle these challenges, we introduce Drugst.One, a platform that assists specialized computational medicine tools in becoming user-friendly, web-based utilities for drug repurposing. With just three lines of code, Drugst.One turns any systems biology software into an interactive web tool for modeling and analyzing complex protein-drug-disease networks. Demonstrating its broad adaptability, Drugst.One has been successfully integrated with 21 computational systems medicine tools. Available at https://drugst.one, Drugst.One has significant potential for streamlining the drug discovery process, allowing researchers to focus on essential aspects of pharmaceutical treatment research.Comment: 45 pages, 6 figures, 7 table

    Community conversations on antimicrobial use and resistance in livestock

    Get PDF

    Reducing Sepsis Mortality: A Cloud-Based Alert Approach

    Get PDF
    The aim of this study is to examine the impact of a cloud-based CDS alerting system for SIRS, a precursor to sepsis, and sepsis itself, on adult patient and process outcomes at VCU Health System. The two main hypotheses are: 1) the implementation of cloud-based SIRS and sepsis alerts will lead to lower sepsis-related mortality and lower average length of stay, and 2) the implementation of cloud-based SIRS and sepsis alerts will lead to more frequent ordering of the Sepsis PowerPlan and more recording of sepsis diagnoses. To measure these outcomes, a pre-post study was conducted. A pre-implementation group diagnosed with sepsis within the year leading up to the alert intervention consisted of 1,551 unique inpatient visits, and the three-year post-implementation sample size was 9,711 visits, for a total cohort of 11,262 visits. Logistic regression and multiple linear regression were used to test the hypotheses. Study results showed that sepsis-related mortality was slightly higher after the implementation of SIRS alerts, but the presence of sepsis alerts did not have a significant relationship to mortality. The average length of stay and the total number of recorded sepsis diagnoses were higher after the implementation of both SIRS and sepsis alerts, while ordering of the Sepsis Initial Resuscitation PowerPlan was lower. There is preliminary evidence from this study that more sepsis diagnoses are made as a result of alert adoption, suggesting that clinicians can consider the implementation of these alerts in order to capture a higher number of sepsis diagnoses

    Examining perceptions of the usefulness and usability of a mobile-based system for pharmacogenomics clinical decision support: A mixed methods study

    Get PDF
    Background. Pharmacogenomic testing has the potential to improve the safety and efficacy of pharmacotherapy, but clinical application of pharmacogenetic knowledge has remained uncommon. Clinical Decision Support (CDS) systems could help overcome some of the barriers to clinical implementation. The aim of this study was to evaluate the perception and usability of a web- and mobile-enabled CDS system for pharmacogenetics-guided drug therapy-the Medication Safety Code (MSC) system-among potential users (i.e., physicians and pharmacists). Furthermore, this study sought to collect data on the practicability and comprehensibility of potential layouts of a proposed personalized pocket card that is intended to not only contain the machine-readable data for use with the MSC system but also humanreadable data on the patient's pharmacogenomic profile. Methods. We deployed an emergent mixed methods design encompassing (1) qualitative interviews with pharmacists and pharmacy students, (2) a survey among pharmacogenomics experts that included both qualitative and quantitative elements and (3) a quantitative survey among physicians and pharmacists. The interviews followed a semistructured guide including a hypothetical patient scenario that had to be solved by using the MSC system. The survey among pharmacogenomics experts focused on what information should be printed on the card and how this information should be arranged. Furthermore, the MSC system was evaluated based on two hypothetical patient scenarios and four follow-up questions on the perceived usability. The second survey assessed physicians' and pharmacists' attitude towards the MSC system. Results. In total, 101 physicians, pharmacists and PGx experts coming from various relevant fields evaluated the MSC system. Overall, the reaction to the MSC system was positive across all investigated parameters and among all user groups. The majority of participants were able to solve the patient scenarios based on the recommendations displayed on the MSC interface. A frequent request among participants was to provide specific listings of alternative drugs and concrete dosage instructions. Negligence of other patient-specific factors for choosing the right treatment such as renal function and co-medication was a common concern related to the MSC system, while data privacy and cost-benefit considerations emerged as the participants' major concerns regarding pharmacogenetic testing in general. The results of the card layout evaluation indicate that a gene-centered and tabulated presentation of the patient's pharmacogenomic profile is helpful and well-accepted. Conclusions. We found that the MSC system was well-received among the physicians and pharmacists included in this study. A personalized pocket card that lists a patient's metabolizer status along with critically affected drugs can alert physicians and pharmacists to the availability of essential therapy modifications

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    System-Agnostic Clinical Decision Support Services: Benefits and Challenges for Scalable Decision Support

    Get PDF
    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors’ formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors’ experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified
    • …
    corecore