2,748 research outputs found

    Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural Network Approach

    Full text link
    Knowledge base completion (KBC) aims to predict missing information in a knowledge base.In this paper, we address the out-of-knowledge-base (OOKB) entity problem in KBC:how to answer queries concerning test entities not observed at training time. Existing embedding-based KBC models assume that all test entities are available at training time, making it unclear how to obtain embeddings for new entities without costly retraining. To solve the OOKB entity problem without retraining, we use graph neural networks (Graph-NNs) to compute the embeddings of OOKB entities, exploiting the limited auxiliary knowledge provided at test time.The experimental results show the effectiveness of our proposed model in the OOKB setting.Additionally, in the standard KBC setting in which OOKB entities are not involved, our model achieves state-of-the-art performance on the WordNet dataset. The code and dataset are available at https://github.com/takuo-h/GNN-for-OOKBComment: This paper has been accepted by IJCAI1

    Large Margin Nearest Neighbor Embedding for Knowledge Representation

    Full text link
    Traditional way of storing facts in triplets ({\it head\_entity, relation, tail\_entity}), abbreviated as ({\it h, r, t}), makes the knowledge intuitively displayed and easily acquired by mankind, but hardly computed or even reasoned by AI machines. Inspired by the success in applying {\it Distributed Representations} to AI-related fields, recent studies expect to represent each entity and relation with a unique low-dimensional embedding, which is different from the symbolic and atomic framework of displaying knowledge in triplets. In this way, the knowledge computing and reasoning can be essentially facilitated by means of a simple {\it vector calculation}, i.e. h+rβ‰ˆt{\bf h} + {\bf r} \approx {\bf t}. We thus contribute an effective model to learn better embeddings satisfying the formula by pulling the positive tail entities t+{\bf t^{+}} to get together and close to {\bf h} + {\bf r} ({\it Nearest Neighbor}), and simultaneously pushing the negatives tβˆ’{\bf t^{-}} away from the positives t+{\bf t^{+}} via keeping a {\it Large Margin}. We also design a corresponding learning algorithm to efficiently find the optimal solution based on {\it Stochastic Gradient Descent} in iterative fashion. Quantitative experiments illustrate that our approach can achieve the state-of-the-art performance, compared with several latest methods on some benchmark datasets for two classical applications, i.e. {\it Link prediction} and {\it Triplet classification}. Moreover, we analyze the parameter complexities among all the evaluated models, and analytical results indicate that our model needs fewer computational resources on outperforming the other methods.Comment: arXiv admin note: text overlap with arXiv:1503.0815
    • …
    corecore