8,222 research outputs found

    Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning

    Full text link
    Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.Comment: This paper is accepted by WWW'1

    Neurosymbolic AI for Reasoning on Graph Structures: A Survey

    Full text link
    Neurosymbolic AI is an increasingly active area of research which aims to combine symbolic reasoning methods with deep learning to generate models with both high predictive performance and some degree of human-level comprehensibility. As knowledge graphs are becoming a popular way to represent heterogeneous and multi-relational data, methods for reasoning on graph structures have attempted to follow this neurosymbolic paradigm. Traditionally, such approaches have utilized either rule-based inference or generated representative numerical embeddings from which patterns could be extracted. However, several recent studies have attempted to bridge this dichotomy in ways that facilitate interpretability, maintain performance, and integrate expert knowledge. Within this article, we survey a breadth of methods that perform neurosymbolic reasoning tasks on graph structures. To better compare the various methods, we propose a novel taxonomy by which we can classify them. Specifically, we propose three major categories: (1) logically-informed embedding approaches, (2) embedding approaches with logical constraints, and (3) rule-learning approaches. Alongside the taxonomy, we provide a tabular overview of the approaches and links to their source code, if available, for more direct comparison. Finally, we discuss the applications on which these methods were primarily used and propose several prospective directions toward which this new field of research could evolve.Comment: 21 pages, 8 figures, 1 table, currently under review. Corresponding GitHub page here: https://github.com/NeSymGraph

    A Comparison of Algorithms for Learning Hidden Variables in Normal Graphs

    Full text link
    A Bayesian factor graph reduced to normal form consists in the interconnection of diverter units (or equal constraint units) and Single-Input/Single-Output (SISO) blocks. In this framework localized adaptation rules are explicitly derived from a constrained maximum likelihood (ML) formulation and from a minimum KL-divergence criterion using KKT conditions. The learning algorithms are compared with two other updating equations based on a Viterbi-like and on a variational approximation respectively. The performance of the various algorithm is verified on synthetic data sets for various architectures. The objective of this paper is to provide the programmer with explicit algorithms for rapid deployment of Bayesian graphs in the applications.Comment: Submitted for journal publicatio

    Iteratively Learning Representations for Unseen Entities with Inter-Rule Correlations

    Full text link
    Recent work on knowledge graph completion (KGC) focused on learning embeddings of entities and relations in knowledge graphs. These embedding methods require that all test entities are observed at training time, resulting in a time-consuming retraining process for out-of-knowledge-graph (OOKG) entities. To address this issue, current inductive knowledge embedding methods employ graph neural networks (GNNs) to represent unseen entities by aggregating information of known neighbors. They face three important challenges: (i) data sparsity, (ii) the presence of complex patterns in knowledge graphs (e.g., inter-rule correlations), and (iii) the presence of interactions among rule mining, rule inference, and embedding. In this paper, we propose a virtual neighbor network with inter-rule correlations (VNC) that consists of three stages: (i) rule mining, (ii) rule inference, and (iii) embedding. In the rule mining process, to identify complex patterns in knowledge graphs, both logic rules and inter-rule correlations are extracted from knowledge graphs based on operations over relation embeddings. To reduce data sparsity, virtual neighbors for OOKG entities are predicted and assigned soft labels by optimizing a rule-constrained problem. We also devise an iterative framework to capture the underlying relations between rule learning and embedding learning. In our experiments, results on both link prediction and triple classification tasks show that the proposed VNC framework achieves state-of-the-art performance on four widely-used knowledge graphs. Further analysis reveals that VNC is robust to the proportion of unseen entities and effectively mitigates data sparsity.Comment: Accepted at CIKM 202

    Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search

    Full text link
    Mobile landmark search (MLS) recently receives increasing attention for its great practical values. However, it still remains unsolved due to two important challenges. One is high bandwidth consumption of query transmission, and the other is the huge visual variations of query images sent from mobile devices. In this paper, we propose a novel hashing scheme, named as canonical view based discrete multi-modal hashing (CV-DMH), to handle these problems via a novel three-stage learning procedure. First, a submodular function is designed to measure visual representativeness and redundancy of a view set. With it, canonical views, which capture key visual appearances of landmark with limited redundancy, are efficiently discovered with an iterative mining strategy. Second, multi-modal sparse coding is applied to transform visual features from multiple modalities into an intermediate representation. It can robustly and adaptively characterize visual contents of varied landmark images with certain canonical views. Finally, compact binary codes are learned on intermediate representation within a tailored discrete binary embedding model which preserves visual relations of images measured with canonical views and removes the involved noises. In this part, we develop a new augmented Lagrangian multiplier (ALM) based optimization method to directly solve the discrete binary codes. We can not only explicitly deal with the discrete constraint, but also consider the bit-uncorrelated constraint and balance constraint together. Experiments on real world landmark datasets demonstrate the superior performance of CV-DMH over several state-of-the-art methods
    corecore