31,703 research outputs found

    Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment

    Full text link
    Multilingual knowledge graph (KG) embeddings provide latent semantic representations of entities and structured knowledge with cross-lingual inferences, which benefit various knowledge-driven cross-lingual NLP tasks. However, precisely learning such cross-lingual inferences is usually hindered by the low coverage of entity alignment in many KGs. Since many multilingual KGs also provide literal descriptions of entities, in this paper, we introduce an embedding-based approach which leverages a weakly aligned multilingual KG for semi-supervised cross-lingual learning using entity descriptions. Our approach performs co-training of two embedding models, i.e. a multilingual KG embedding model and a multilingual literal description embedding model. The models are trained on a large Wikipedia-based trilingual dataset where most entity alignment is unknown to training. Experimental results show that the performance of the proposed approach on the entity alignment task improves at each iteration of co-training, and eventually reaches a stage at which it significantly surpasses previous approaches. We also show that our approach has promising abilities for zero-shot entity alignment, and cross-lingual KG completion.Comment: To appear in IJCAI-1

    Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion

    Full text link
    Human-curated knowledge graphs provide critical supportive information to various natural language processing tasks, but these graphs are usually incomplete, urging auto-completion of them. Prevalent graph embedding approaches, e.g., TransE, learn structured knowledge via representing graph elements into dense embeddings and capturing their triple-level relationship with spatial distance. However, they are hardly generalizable to the elements never visited in training and are intrinsically vulnerable to graph incompleteness. In contrast, textual encoding approaches, e.g., KG-BERT, resort to graph triple's text and triple-level contextualized representations. They are generalizable enough and robust to the incompleteness, especially when coupled with pre-trained encoders. But two major drawbacks limit the performance: (1) high overheads due to the costly scoring of all possible triples in inference, and (2) a lack of structured knowledge in the textual encoder. In this paper, we follow the textual encoding paradigm and aim to alleviate its drawbacks by augmenting it with graph embedding techniques -- a complementary hybrid of both paradigms. Specifically, we partition each triple into two asymmetric parts as in translation-based graph embedding approach, and encode both parts into contextualized representations by a Siamese-style textual encoder. Built upon the representations, our model employs both deterministic classifier and spatial measurement for representation and structure learning respectively. Moreover, we develop a self-adaptive ensemble scheme to further improve the performance by incorporating triple scores from an existing graph embedding model. In experiments, we achieve state-of-the-art performance on three benchmarks and a zero-shot dataset for link prediction, with highlights of inference costs reduced by 1-2 orders of magnitude compared to a textual encoding method.Comment: 12 pages, WWW'21, April19-23, 2021, Ljubljana, Sloveni

    Open-World Knowledge Graph Completion

    Full text link
    Knowledge Graphs (KGs) have been applied to many tasks including Web search, link prediction, recommendation, natural language processing, and entity linking. However, most KGs are far from complete and are growing at a rapid pace. To address these problems, Knowledge Graph Completion (KGC) has been proposed to improve KGs by filling in its missing connections. Unlike existing methods which hold a closed-world assumption, i.e., where KGs are fixed and new entities cannot be easily added, in the present work we relax this assumption and propose a new open-world KGC task. As a first attempt to solve this task we introduce an open-world KGC model called ConMask. This model learns embeddings of the entity's name and parts of its text-description to connect unseen entities to the KG. To mitigate the presence of noisy text descriptions, ConMask uses a relationship-dependent content masking to extract relevant snippets and then trains a fully convolutional neural network to fuse the extracted snippets with entities in the KG. Experiments on large data sets, both old and new, show that ConMask performs well in the open-world KGC task and even outperforms existing KGC models on the standard closed-world KGC task.Comment: 8 pages, accepted to AAAI 201

    Approach for Semi-automatic Construction of Anti-infective Drug Ontology Based on Entity Linking

    Full text link
    Ontology can be used for the interpretation of natural language. To construct an anti-infective drug ontology, one needs to design and deploy a methodological step to carry out the entity discovery and linking. Medical synonym resources have been an important part of medical natural language processing (NLP). However, there are problems such as low precision and low recall rate. In this study, an NLP approach is adopted to generate candidate entities. Open ontology is analyzed to extract semantic relations. Six-word vector features and word-level features are selected to perform the entity linking. The extraction results of synonyms with a single feature and different combinations of features are studied. Experiments show that our selected features have achieved a precision rate of 86.77%, a recall rate of 89.03% and an F1 score of 87.89%. This paper finally presents the structure of the proposed ontology and its relevant statistical data

    Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs

    Full text link
    We study the problem of knowledge graph (KG) embedding. A widely-established assumption to this problem is that similar entities are likely to have similar relational roles. However, existing related methods derive KG embeddings mainly based on triple-level learning, which lack the capability of capturing long-term relational dependencies of entities. Moreover, triple-level learning is insufficient for the propagation of semantic information among entities, especially for the case of cross-KG embedding. In this paper, we propose recurrent skipping networks (RSNs), which employ a skipping mechanism to bridge the gaps between entities. RSNs integrate recurrent neural networks (RNNs) with residual learning to efficiently capture the long-term relational dependencies within and between KGs. We design an end-to-end framework to support RSNs on different tasks. Our experimental results showed that RSNs outperformed state-of-the-art embedding-based methods for entity alignment and achieved competitive performance for KG completion.Comment: Accepted by the 36th International Conference on Machine Learning (ICML 2019

    Knowledge Graph Embeddings and Explainable AI

    Full text link
    Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by explaining what they are, how they can be generated and how they can be evaluated. We summarize the state-of-the-art in this field by describing the approaches that have been introduced to represent knowledge in the vector space. In relation to knowledge representation, we consider the problem of explainability, and discuss models and methods for explaining predictions obtained via knowledge graph embeddings.Comment: Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Plamonari, Pasquale Minervini, Knowledge Graph Embeddings and Explainable AI. In: Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable AI -- Foundations, Applications and Challenges. Studies on the Semantic Web, IOS Press, Amsterdam, 202

    Learning beyond datasets: Knowledge Graph Augmented Neural Networks for Natural language Processing

    Full text link
    Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.Comment: Accepted at NAACL 201

    Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence

    Full text link
    Knowledge graphs (KGs), which could provide essential relational information between entities, have been widely utilized in various knowledge-driven applications. Since the overall human knowledge is innumerable that still grows explosively and changes frequently, knowledge construction and update inevitably involve automatic mechanisms with less human supervision, which usually bring in plenty of noises and conflicts to KGs. However, most conventional knowledge representation learning methods assume that all triple facts in existing KGs share the same significance without any noises. To address this problem, we propose a novel confidence-aware knowledge representation learning framework (CKRL), which detects possible noises in KGs while learning knowledge representations with confidence simultaneously. Specifically, we introduce the triple confidence to conventional translation-based methods for knowledge representation learning. To make triple confidence more flexible and universal, we only utilize the internal structural information in KGs, and propose three kinds of triple confidences considering both local and global structural information. In experiments, We evaluate our models on knowledge graph noise detection, knowledge graph completion and triple classification. Experimental results demonstrate that our confidence-aware models achieve significant and consistent improvements on all tasks, which confirms the capability of CKRL modeling confidence with structural information in both KG noise detection and knowledge representation learning.Comment: 8 page

    Towards Conversational Recommendation over Multi-Type Dialogs

    Full text link
    We propose a new task of conversational recommendation over multi-type dialogs, where the bots can proactively and naturally lead a conversation from a non-recommendation dialog (e.g., QA) to a recommendation dialog, taking into account user's interests and feedback. To facilitate the study of this task, we create a human-to-human Chinese dialog dataset \emph{DuRecDial} (about 10k dialogs, 156k utterances), which contains multiple sequential dialogs for every pair of a recommendation seeker (user) and a recommender (bot). In each dialog, the recommender proactively leads a multi-type dialog to approach recommendation targets and then makes multiple recommendations with rich interaction behavior. This dataset allows us to systematically investigate different parts of the overall problem, e.g., how to naturally lead a dialog, how to interact with users for recommendation. Finally we establish baseline results on DuRecDial for future studies. Dataset and codes are publicly available at https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/ACL2020-DuRecDial.Comment: Accepted by ACL 202

    Generating Fine-Grained Open Vocabulary Entity Type Descriptions

    Full text link
    While large-scale knowledge graphs provide vast amounts of structured facts about entities, a short textual description can often be useful to succinctly characterize an entity and its type. Unfortunately, many knowledge graph entities lack such textual descriptions. In this paper, we introduce a dynamic memory-based network that generates a short open vocabulary description of an entity by jointly leveraging induced fact embeddings as well as the dynamic context of the generated sequence of words. We demonstrate the ability of our architecture to discern relevant information for more accurate generation of type description by pitting the system against several strong baselines.Comment: Published in ACL 201
    corecore