1,366 research outputs found

    The Design of an Oncology Knowledge Base from an Online Health Forum

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Knowledge base completion is an important task that allows scientists to reason over knowledge bases and discover new facts. In this thesis, a patient-centric knowledge base is designed and constructed using medical entities and relations extracted from the health forum r/cancer. The knowledge base stores information in binary relation triplets. It is enhanced with an is-a relation that is able to represent the hierarchical relationship between different medical entities. An enhanced Neural Tensor Network that utilizes the frequency of occurrence of relation triplets in the dataset is then developed to infer new facts from the enhanced knowledge base. The results show that when the enhanced inference model uses the enhanced knowledge base, a higher accuracy (73.2 %) and recall@10 (35.4%) are obtained. In addition, this thesis describes a methodology for knowledge base and associated inference model design that can be applied to other chronic diseases

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline
    • …
    corecore