226 research outputs found

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    Graph Neural Networks for Natural Language Processing: A Survey

    Full text link
    Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.Comment: 127 page

    Hierarchical Relational Learning for Few-Shot Knowledge Graph Completion

    Full text link
    Knowledge graphs (KGs) are known for their large scale and knowledge inference ability, but are also notorious for the incompleteness associated with them. Due to the long-tail distribution of the relations in KGs, few-shot KG completion has been proposed as a solution to alleviate incompleteness and expand the coverage of KGs. It aims to make predictions for triplets involving novel relations when only a few training triplets are provided as reference. Previous methods have mostly focused on designing local neighbor aggregators to learn entity-level information and/or imposing sequential dependency assumption at the triplet level to learn meta relation information. However, valuable pairwise triplet-level interactions and context-level relational information have been largely overlooked for learning meta representations of few-shot relations. In this paper, we propose a hierarchical relational learning method (HiRe) for few-shot KG completion. By jointly capturing three levels of relational information (entity-level, triplet-level and context-level), HiRe can effectively learn and refine the meta representation of few-shot relations, and consequently generalize very well to new unseen relations. Extensive experiments on two benchmark datasets validate the superiority of HiRe against other state-of-the-art methods.Comment: 10 pages, 5 figure

    A Retrieve-and-Read Framework for Knowledge Graph Link Prediction

    Full text link
    Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to superfluous computation, over-smoothing of node representations, and also limits their expressive power. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This simple yet effective design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method. Furthermore, our analysis yields valuable insights for designing improved retrievers within the framework.Comment: Accepted to CIKM'23; Published version DOI: https://doi.org/10.1145/3583780.3614769 ;12 pages, 4 figure

    Using Graph Algorithms to Pretrain Graph Completion Transformers

    Full text link
    Recent work on Graph Neural Networks has demonstrated that self-supervised pretraining can further enhance performance on downstream graph, link, and node classification tasks. However, the efficacy of pretraining tasks has not been fully investigated for downstream large knowledge graph completion tasks. Using a contextualized knowledge graph embedding approach, we investigate five different pretraining signals, constructed using several graph algorithms and no external data, as well as their combination. We leverage the versatility of our Transformer-based model to explore graph structure generation pretraining tasks (i.e. path and k-hop neighborhood generation), typically inapplicable to most graph embedding methods. We further propose a new path-finding algorithm guided by information gain and find that it is the best-performing pretraining task across three downstream knowledge graph completion datasets. While using our new path-finding algorithm as a pretraining signal provides 2-3% MRR improvements, we show that pretraining on all signals together gives the best knowledge graph completion results. In a multitask setting that combines all pretraining tasks, our method surpasses the latest and strong performing knowledge graph embedding methods on all metrics for FB15K-237, on MRR and Hit@1 for WN18RRand on MRR and hit@10 for JF17K (a knowledge hypergraph dataset)

    DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning

    Full text link
    Temporal knowledge graphs (TKGs) model the temporal evolution of events and have recently attracted increasing attention. Since TKGs are intrinsically incomplete, it is necessary to reason out missing elements. Although existing TKG reasoning methods have the ability to predict missing future events, they fail to generate explicit reasoning paths and lack explainability. As reinforcement learning (RL) for multi-hop reasoning on traditional knowledge graphs starts showing superior explainability and performance in recent advances, it has opened up opportunities for exploring RL techniques on TKG reasoning. However, the performance of RL-based TKG reasoning methods is limited due to: (1) lack of ability to capture temporal evolution and semantic dependence jointly; (2) excessive reliance on manually designed rewards. To overcome these challenges, we propose an adaptive reinforcement learning model based on attention mechanism (DREAM) to predict missing elements in the future. Specifically, the model contains two components: (1) a multi-faceted attention representation learning method that captures semantic dependence and temporal evolution jointly; (2) an adaptive RL framework that conducts multi-hop reasoning by adaptively learning the reward functions. Experimental results demonstrate DREAM outperforms state-of-the-art models on public datasetComment: 11 page

    Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News Detection

    Full text link
    Despite considerable advances in automated fake news detection, due to the timely nature of news, it remains a critical open question how to effectively predict the veracity of news articles based on limited fact-checks. Existing approaches typically follow a "Train-from-Scratch" paradigm, which is fundamentally bounded by the availability of large-scale annotated data. While expressive pre-trained language models (PLMs) have been adapted in a "Pre-Train-and-Fine-Tune" manner, the inconsistency between pre-training and downstream objectives also requires costly task-specific supervision. In this paper, we propose "Prompt-and-Align" (P&A), a novel prompt-based paradigm for few-shot fake news detection that jointly leverages the pre-trained knowledge in PLMs and the social context topology. Our approach mitigates label scarcity by wrapping the news article in a task-related textual prompt, which is then processed by the PLM to directly elicit task-specific knowledge. To supplement the PLM with social context without inducing additional training overheads, motivated by empirical observation on user veracity consistency (i.e., social users tend to consume news of the same veracity type), we further construct a news proximity graph among news articles to capture the veracity-consistent signals in shared readerships, and align the prompting predictions along the graph edges in a confidence-informed manner. Extensive experiments on three real-world benchmarks demonstrate that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.Comment: Accepted to CIKM 2023 (Full Paper
    corecore