20,699 research outputs found

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Creating Full Individual-level Location Timelines from Sparse Social Media Data

    Full text link
    In many domain applications, a continuous timeline of human locations is critical; for example for understanding possible locations where a disease may spread, or the flow of traffic. While data sources such as GPS trackers or Call Data Records are temporally-rich, they are expensive, often not publicly available or garnered only in select locations, restricting their wide use. Conversely, geo-located social media data are publicly and freely available, but present challenges especially for full timeline inference due to their sparse nature. We propose a stochastic framework, Intermediate Location Computing (ILC) which uses prior knowledge about human mobility patterns to predict every missing location from an individual's social media timeline. We compare ILC with a state-of-the-art RNN baseline as well as methods that are optimized for next-location prediction only. For three major cities, ILC predicts the top 1 location for all missing locations in a timeline, at 1 and 2-hour resolution, with up to 77.2% accuracy (up to 6% better accuracy than all compared methods). Specifically, ILC also outperforms the RNN in settings of low data; both cases of very small number of users (under 50), as well as settings with more users, but with sparser timelines. In general, the RNN model needs a higher number of users to achieve the same performance as ILC. Overall, this work illustrates the tradeoff between prior knowledge of heuristics and more data, for an important societal problem of filling in entire timelines using freely available, but sparse social media data.Comment: 10 pages, 8 figures, 2 table

    Towards Real-Time, Country-Level Location Classification of Worldwide Tweets

    Get PDF
    In contrast to much previous work that has focused on location classification of tweets restricted to a specific country, here we undertake the task in a broader context by classifying global tweets at the country level, which is so far unexplored in a real-time scenario. We analyse the extent to which a tweet's country of origin can be determined by making use of eight tweet-inherent features for classification. Furthermore, we use two datasets, collected a year apart from each other, to analyse the extent to which a model trained from historical tweets can still be leveraged for classification of new tweets. With classification experiments on all 217 countries in our datasets, as well as on the top 25 countries, we offer some insights into the best use of tweet-inherent features for an accurate country-level classification of tweets. We find that the use of a single feature, such as the use of tweet content alone -- the most widely used feature in previous work -- leaves much to be desired. Choosing an appropriate combination of both tweet content and metadata can actually lead to substantial improvements of between 20\% and 50\%. We observe that tweet content, the user's self-reported location and the user's real name, all of which are inherent in a tweet and available in a real-time scenario, are particularly useful to determine the country of origin. We also experiment on the applicability of a model trained on historical tweets to classify new tweets, finding that the choice of a particular combination of features whose utility does not fade over time can actually lead to comparable performance, avoiding the need to retrain. However, the difficulty of achieving accurate classification increases slightly for countries with multiple commonalities, especially for English and Spanish speaking countries.Comment: Accepted for publication in IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE
    • …
    corecore