260 research outputs found

    MUST: A Multilingual Student-Teacher Learning approach for low-resource speech recognition

    Full text link
    Student-teacher learning or knowledge distillation (KD) has been previously used to address data scarcity issue for training of speech recognition (ASR) systems. However, a limitation of KD training is that the student model classes must be a proper or improper subset of the teacher model classes. It prevents distillation from even acoustically similar languages if the character sets are not same. In this work, the aforementioned limitation is addressed by proposing a MUltilingual Student-Teacher (MUST) learning which exploits a posteriors mapping approach. A pre-trained mapping model is used to map posteriors from a teacher language to the student language ASR. These mapped posteriors are used as soft labels for KD learning. Various teacher ensemble schemes are experimented to train an ASR model for low-resource languages. A model trained with MUST learning reduces relative character error rate (CER) up to 9.5% in comparison with a baseline monolingual ASR.Comment: Accepted for IEEE ASRU 202

    Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

    Get PDF
    Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of years have led to neural approaches to natural language generation (NLG). These methods combine generative language learning techniques with neural-networks based frameworks. With a wide range of applications in natural language processing, neural NLG (NNLG) is a new and fast growing field of research. In this state-of-the-art report, we investigate the recent developments and applications of NNLG in its full extent from a multidimensional view, covering critical perspectives such as multimodality, multilinguality, controllability and learning strategies. We summarize the fundamental building blocks of NNLG approaches from these aspects and provide detailed reviews of commonly used preprocessing steps and basic neural architectures. This report also focuses on the seminal applications of these NNLG models such as machine translation, description generation, automatic speech recognition, abstractive summarization, text simplification, question answering and generation, and dialogue generation. Finally, we conclude with a thorough discussion of the described frameworks by pointing out some open research directions.This work has been partially supported by the European Commission ICT COST Action “Multi-task, Multilingual, Multi-modal Language Generation” (CA18231). AE was supported by BAGEP 2021 Award of the Science Academy. EE was supported in part by TUBA GEBIP 2018 Award. BP is in in part funded by Independent Research Fund Denmark (DFF) grant 9063-00077B. IC has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 838188. EL is partly funded by Generalitat Valenciana and the Spanish Government throught projects PROMETEU/2018/089 and RTI2018-094649-B-I00, respectively. SMI is partly funded by UNIRI project uniri-drustv-18-20. GB is partly supported by the Ministry of Innovation and the National Research, Development and Innovation Office within the framework of the Hungarian Artificial Intelligence National Laboratory Programme. COT is partially funded by the Romanian Ministry of European Investments and Projects through the Competitiveness Operational Program (POC) project “HOLOTRAIN” (grant no. 29/221 ap2/07.04.2020, SMIS code: 129077) and by the German Academic Exchange Service (DAAD) through the project “AWAKEN: content-Aware and netWork-Aware faKE News mitigation” (grant no. 91809005). ESA is partially funded by the German Academic Exchange Service (DAAD) through the project “Deep-Learning Anomaly Detection for Human and Automated Users Behavior” (grant no. 91809358)

    Code Switching in Teaching English to Speakers of Other Languages

    Get PDF
    One of the most controversial issues in foreign language teaching and learning over many years has been the role of the students’ L1 in L2 target language education. While a monolingual approach prohibited the use of the target language in L2 classroom, researchers have reexamined the issues related to the use of students’ L1 through code switching in the L2 classroom since the 1990s. The results of these studies have shown that the L1, if used properly and judiciously, may serve important functions for the learning process and social environment of the classroom. The purpose of this study was a systematic literature review of this research for the preparation of a guidebook as to the functions, manner, reasons, and contributions of code switching as a part of 2L English language teaching

    Learning languages from parallel corpora

    Full text link
    This work describes a blueprint for an application that generates language learning exercises from parallel corpora. Word alignment and parallel structures allow for the automatic assessment of sentence pairs in the source and target languages, while users of the application continuously improve the quality of the data with their interactions, thus crowdsourcing parallel language learning material. Through triangulation, their assessment can be transferred to language pairs other than the original ones if multiparallel corpora are used as a source. Several challenges need to be addressed for such an application to work, and we will discuss three of them here. First, the question of how adequate learning material can be identified in corpora has received some attention in the last decade, and we will detail what the structure of parallel corpora implies for that selection. Secondly, we will consider which type of exercises can be generated automatically from parallel corpora such that they foster learning and keep learners motivated. And thirdly, we will highlight the potential of employing users, that is both teachers and learners, as crowdsourcers to help improve the material

    Model-Based Evaluation of Multilinguality

    Full text link

    Cross-modality Data Augmentation for End-to-End Sign Language Translation

    Full text link
    End-to-end sign language translation (SLT) aims to convert sign language videos into spoken language texts directly without intermediate representations. It has been a challenging task due to the modality gap between sign videos and texts and the data scarcity of labeled data. To tackle these challenges, we propose a novel Cross-modality Data Augmentation (XmDA) framework to transfer the powerful gloss-to-text translation capabilities to end-to-end sign language translation (i.e. video-to-text) by exploiting pseudo gloss-text pairs from the sign gloss translation model. Specifically, XmDA consists of two key components, namely, cross-modality mix-up and cross-modality knowledge distillation. The former explicitly encourages the alignment between sign video features and gloss embeddings to bridge the modality gap. The latter utilizes the generation knowledge from gloss-to-text teacher models to guide the spoken language text generation. Experimental results on two widely used SLT datasets, i.e., PHOENIX-2014T and CSL-Daily, demonstrate that the proposed XmDA framework significantly and consistently outperforms the baseline models. Extensive analyses confirm our claim that XmDA enhances spoken language text generation by reducing the representation distance between videos and texts, as well as improving the processing of low-frequency words and long sentences.Comment: Accepted to Findings EMNLP 202

    Deep audio-visual speech recognition

    Get PDF
    Decades of research in acoustic speech recognition have led to systems that we use in our everyday life. However, even the most advanced speech recognition systems fail in the presence of noise. The degraded performance can be compensated by introducing visual speech information. However, Visual Speech Recognition (VSR) in naturalistic conditions is very challenging, in part due to the lack of architectures and annotations. This thesis contributes towards the problem of Audio-Visual Speech Recognition (AVSR) from different aspects. Firstly, we develop AVSR models for isolated words. In contrast to previous state-of-the-art methods that consists of a two-step approach, feature extraction and recognition, we present an End-to-End (E2E) approach inside a deep neural network, and this has led to a significant improvement in audio-only, visual-only and audio-visual experiments. We further replace Bi-directional Gated Recurrent Unit (BGRU) with Temporal Convolutional Networks (TCN) to greatly simplify the training procedure. Secondly, we extend our AVSR model for continuous speech by presenting a hybrid Connectionist Temporal Classification (CTC)/Attention model, that can be trained in an end-to-end manner. We then propose the addition of prediction-based auxiliary tasks to a VSR model and highlight the importance of hyper-parameter optimisation and appropriate data augmentations. Next, we present a self-supervised framework, Learning visual speech Representations from Audio via self-supervision (LiRA). Specifically, we train a ResNet+Conformer model to predict acoustic features from unlabelled visual speech, and find that this pre-trained model can be leveraged towards word-level and sentence-level lip-reading. We also investigate the Lombard effect influence in an end-to-end AVSR system, which is the first work using end-to-end deep architectures and presents results on unseen speakers. We show that even if a relatively small amount of Lombard speech is added to the training set then the performance in a real scenario, where noisy Lombard speech is present, can be significantly improved. Lastly, we propose a detection method against adversarial examples in an AVSR system, where the strong correlation between audio and visual streams is leveraged. The synchronisation confidence score is leveraged as a proxy for audio-visual correlation and based on it, we can detect adversarial attacks. We apply recent adversarial attacks on two AVSR models and the experimental results demonstrate that the proposed approach is an effective way for detecting such attacks.Open Acces

    24th Nordic Conference on Computational Linguistics (NoDaLiDa)

    Get PDF
    corecore